The oil in water emulsion/solvent extraction method is used to fabricate many FDA approved, polymer particle formulations for drug delivery. However, these formulations do not benefit from surface functionalization that can be achieved through tuning particle surface chemistry. Poly(vinyl alcohol) (PVA) is the emulsifier used for many FDA approved formulations and remains associated with the particle surface after fabrication. We hypothesized that the hydroxyl groups in PVA could be conjugated with biomolecules using isothiocyanate chemistry and that these modifications would endow the particle surface with additional functionality. We demonstrate that fluorescein isothiocyanate and an isothiocyanate derivatized mannose molecule can be covalently attached to PVA in a one-step reaction. The modified PVA polymers perform as well as unmodified PVA in acting as an emulsifier for fabrication of poly(lactide-co-glycolide) particles. Particles made with the fluorescein modified PVA exhibit fluorescence confined to the particle surface, while particles made with mannose modified PVA bind concanavalin A. In addition, mannose modified PVA increases particle association with primary macrophages by three-fold. Taken together, we present a facile method for modifying the surface reactivity of polymer particles widely used for drug delivery in basic research and clinical practice. Given that methods are established for conjugating the isothiocyanate functional group to a wide range of biomolecules, our approach may enable PVA based biomaterials to engage a multitude of biological systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049500 | PMC |
http://dx.doi.org/10.1021/acsapm.1c01066 | DOI Listing |
Exposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Modern Mechanical Engineering, Waseda University 3-4-1 Ookubo Shinhuku-ku Tokyo Japan
The diffusion motions of individual polymer aggregates in disordered porous media were visualized using the single-particle tracking (SPT) method because the motions inside porous media play important roles in various fields of science and engineering. In the aggregates diffused on the surfaces of pores, continuous adsorption and desorption processes were observed. The relationship between the size of the aggregates and pore size was analysed based on diffusion coefficients, moment scaling spectrum (MSS) slope analysis, and diffusion anisotropy analysis.
View Article and Find Full Text PDFSci Rep
January 2025
Pesticide Formulation Research Department, Central Agriculture Pesticides Laboratory, Agricultural Research Center, Alexandria, Egypt.
Formulation and adjuvant technologies can facilitate the use of insecticides that have higher biological efficiency application features. Safety, physicochemical properties by increasing consumer demand for safe food and enhancing operator safety. The aim of this current work was to develop a green efficient, and stable pesticide formulation.
View Article and Find Full Text PDFSci Rep
January 2025
Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, P. R. China.
The working performance of the discrete functional surface is affected by the surface form. Both the surface form and the geometric function should be considered in tolerance design. However, the tolerance of different parts has different influence on the geometric function and surface form.
View Article and Find Full Text PDFDent Mater
January 2025
Department of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK; Photon Science Institute, University of Manchester, Manchester M13 9PL, UK. Electronic address:
Objective: To assess the impact of mechanical decontamination using rotary brushes on the surface topography, elemental composition, roughness, and wettability of titanium implant surfaces.
Methods: Four commercially available rotary brushes were used: Labrida BioClean Brush® (LB), i-Brush1 (IB), NiTiBrush Nano (NiTiB), and Peri-implantitis Brush (PIB). Seventy-five titanium discs with sandblasted, large-grit, acid-etched (SLA) surfaces were randomly assigned to five groups (n = 15): LB, IB, NiTiB, PIB, and a control group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!