Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Breast cancer (BC) is a highly heterogeneous disease with high morbidity and mortality. Its subtypes may have distinctly different biological behaviors, clinical outcomes, and therapeutic responses. The metabolic status of BC tissue is closely related to its progress. Therefore, we comprehensively characterized the function of metabolic genes in BC and identified new biomarkers to predict BC patients' prognoses.
Methods: Metabolic genes were identified by intersecting genes obtained from two published pieces of literature. The function of metabolic genes in BC was determined by extracting differentially expressed genes (DEGs), performing functional enrichment analyses, analyzing the infiltrating proportion of immune cells, and conducting metabolic subgroup analyses. A risk score model was constructed to assess the prognoses of BC patients by performing the univariate Cox regression, LASSO algorithm, multivariate Cox regression, Kaplan-Meier survival analyses, and ROC curve analyses in the training set. The prognostic model was then validated on the testing dataset, external dataset, the whole TCGA-BC database, and our clinical specimens. Finally, a nomogram was constructed for clinical prognostic prediction based on the risk score model and other clinicopathological parameters.
Results: 955 metabolic genes were obtained. Among these, 157 metabolic DEGs were identified between BC and normal tissues for subsequent GO and KEGG pathway enrichment analyses. 5 metabolic genes were negatively correlated with CD8 T cells, while 49 genes were positively correlated with CD8 T cells. Furthermore, 5 metabolic subgroups with varying proportions of PAM50 subtypes, TNM classification, and immune cell infiltration were obtained. Finally, a risk score model was constructed to predict the prognoses of BC patients, and a nomogram incorporating the risk score model was established for clinical application.
Conclusion: In this study, we elucidated tumor heterogeneity from metabolite profiling of BC. The roles of metabolic genes in the occurrence of BC were comprehensively characterized, clarifying the relationship between the tumor microenvironment (TME) and metabolic genes. Meanwhile, a concise prediction model was also constructed based on metabolic genes, providing a convenient and precise method for the individualized diagnosis and treatment of BC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042645 | PMC |
http://dx.doi.org/10.1155/2022/3846010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!