Similar Publications

Probing the Self-Assembly dynamics of cellulose nanocrystals by X-ray photon correlation spectroscopy.

J Colloid Interface Sci

December 2024

Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Electronic address:

Hypothesis: Charge-stabilized colloidal cellulose nanocrystals (CNCs) can self-assemble into higher-ordered chiral nematic structures by varying the volume fraction. The assembly process exhibits distinct dynamics during the isotropic to liquid crystal phase transition, which can be elucidated using X-ray photon correlation spectroscopy (XPCS).

Experiments: Anionic CNCs were dispersed in propylene glycol (PG) and water spanning a range of volume fractions, encompassing several phase transitions.

View Article and Find Full Text PDF

Low field electrocaloric effect at isotropic-ferroelectric nematic phase transition.

Soft Matter

December 2024

Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.

Electrocaloric effects (ECE) in solid state materials, such as ferroelectric ceramics and ferroelectric polymers, have a great impact in developing cooling systems. Herein, we describe the ECE of a newly synthesized ferroelectric nematic liquid crystal compound at the isotropic-ferroelectric nematic (I-N) phase transition. While the Joule heat completely suppressed the ECE in a DC field, in an AC field with < 1.

View Article and Find Full Text PDF

Design of Chemoresponsive Liquid Crystals Using Metal-Coordinating Polymer Surfaces.

ACS Appl Mater Interfaces

January 2025

Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.

Liquid crystals (LCs), when interfaced with chemically functionalized surfaces, can amplify a range of chemical and physical transformations into optical outputs. While metal cation-binding sites on surfaces have been shown to provide a basis for the design of chemoresponsive LCs, the cations have been found to dissociate from the surfaces and dissolve slowly into LCs, resulting in time-dependent changes in the properties of LC-solid interfaces (which impacts the reliability of devices incorporating such surfaces). Here, we explore the use of surfaces comprising metal-coordinating polymers to minimize the dissolution of metal cations into LCs and characterize the impact of the interfacial environment created by the coordinating polymer on the ordering and time-dependent properties of LCs.

View Article and Find Full Text PDF

Ferroelectric nematic (N) liquid crystals present a compelling platform for exploring topological defects in polar fields, while their structural properties can be significantly altered by ionic doping. In this study, we demonstrate that doping the ferroelectric nematic material RM734 with cationic polymers enables the formation of polymeric micelles that connect pairs of half-integer topological defects. Polarizing optical microscopy reveals that these string defects exhibit butterfly textures, featured with a 2D polarization field divided by Néel-type kink walls into domains exhibiting either uniform polarization or negative splay and bend deformations.

View Article and Find Full Text PDF

Electrical polarization switching of perovskite polariton laser.

Nanophotonics

June 2024

Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland.

Optoelectronic and spinoptronic technologies benefit from flexible and tunable coherent light sources combining the best properties of nano- and material-engineering to achieve favorable properties such as chiral lasing and low threshold nonlinearities. In this work we demonstrate an electrically wavelength- and polarization-tunable room temperature polariton laser due to emerging photonic spin-orbit coupling. For this purpose, we design an optical cavity filled with both birefringent nematic liquid crystal and an inorganic perovskite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!