Using Cr(vi) as the imprinted ions and 2-allyl-1,3-diphenyl-1,3-propanedione (ADPD) (a compound synthesized by independent design) as the functional monomer, a series of chromium ion-imprinted composite membranes (Cr(vi)-IICMs) and corresponding non-imprinted composite membranes (NICMs) were synthesized and tested. The results showed that the Cr(vi)-IICM membrane prepared under optimal experimental conditions exhibited a high adsorption capacity towards Cr(vi) ( = 30.35 mg g) and a high imprinting factor ( = 2.70). The structural characteristics of Cr(vi)-IICM and NICM were investigated using FE-SEM, ATR-FTIR, and BET techniques combined with UV-Vis photometry and inductively coupled plasma emission spectrometry (ICP-OES) to evaluate the adsorption performance and permeation selectivity, while the effect on adsorption permeance of varying the experimental conditions including the solvent type, pH, and temperature was also investigated. The results showed that Cr(vi)-IICM is a mesoporous material with excellent permeation selectivity, reusability, and favorable pH response, and that its adsorption behavior is in accordance with the Langmuir model and pseudo-first-order kinetics. Thus, Cr(vi)-IICM shows great potential towards utilization as a "smart membrane" to control the separation and removal of Cr(vi) in wastewater, and also proved a reasonable design of the new functional monomer ADPD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044227 | PMC |
http://dx.doi.org/10.1039/d1ra07678g | DOI Listing |
Environ Monit Assess
January 2025
School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China.
In this study, an efficient membrane composed of polysulfone and graphene oxide was developed and evaluated for its efficacy in chromium adsorption. Characterization of the synthesized membrane involved comprehensive analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) to assess its structural properties. Subsequently, the membrane's performance in removing chromium from aqueous solutions was scrutinized, considering key operational parameters.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Microbiology, Anatomy, Physiology, and Pharmacology, La Trobe University, Melbourne, Victoria, Australia.
Bacterial membrane vesicles (MVs) are produced by all bacteria and contribute to numerous bacterial functions due to their ability to package and transfer bacterial cargo. In doing so, MVs have been shown to facilitate horizontal gene transfer, mediate antimicrobial activity, and promote biofilm formation. Uropathogenic is a pathogenic Gram-negative organism that persists in the urinary tract of its host due to its ability to form persistent, antibiotic-resistant biofilms.
View Article and Find Full Text PDFLangmuir
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
Understanding the interactions between lipid membranes and nucleotide drugs is crucial for nucleic acid therapy. Although several methods have been employed to evaluate nucleotide-lipid membrane interactions, these interactions can be complex; this complexity arises from how external factors, such as ionic strength or temperature, influence the lipid membrane's overall properties. In this study, we prepared a lipid membrane-immobilized monolithic silica (LMiMS) column for high-performance liquid chromatography (HPLC) analysis to understand interactions between the lipid membrane and nucleic acid.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
Tumor treatment remains a significant medical challenge, with many traditional therapies causing notable side effects. Recent research has led to the development of immunotherapy, which offers numerous advantages. Bacteria inherently possess motility, allowing them to preferentially colonize tumors and modulate the tumor immune microenvironment, thus influencing the efficacy of immunotherapy.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
The plasma membrane and the underlying skeleton form a protective barrier for eukaryotic cells. The molecular players forming this complex composite material constantly rearrange under mechanical stress. One of those molecules, spectrin, is ubiquitous in the membrane skeleton and linked by short actin filaments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!