In this study, a simple and eco-friendly method was proposed to efficiently prepare nanocomposite hydrogels with excellent mechanical properties and satisfactory pH response behaviour by frontal polymerization (FP) of DEM in close to 4 minutes. Acrylamide (AM) and choline chloride (ChCl) were used as raw materials to synthesize deep eutectic monomers (DEMs). Nitrogen-doped carbon nanotubes were dispersed in DEMs as fillers, and poly(acrylamide)/nitrogen-doped carbon nanotube (PAM/N-CNT) nanocomposite hydrogels were prepared by FP. The non-covalent interactions between PAM hydrogels and N-CNTs was verified by Fourier infrared spectroscopy. The mechanical properties of PAM/N-CNT nanocomposite hydrogels were investigated, as well as the swelling and pH response properties. The results showed that the compressive strength of PAM hydrogels was significantly enhanced by the addition of N-CNTs due to the hydrophobic interaction of N-CNTs, which also causes sensitive response properties of the PAM hydrogels in acid solution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042954 | PMC |
http://dx.doi.org/10.1039/d1ra06421e | DOI Listing |
Int J Pharm X
June 2025
Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
Cancer remains one of the leading causes of death worldwide, highlighting the urgent need for novel antitumor drugs. Natural products have long been a crucial source of anticancer agents. Among these, emodin (EMO), a multifunctional anthraquinone compound, exhibits significant anticancer effects but is hindered in clinical applications by challenges such as low solubility, rapid metabolism, poor bioavailability, and off-target toxicity.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
Cyclophosphamide has a certain therapeutic effect on treating systemic sclerosis (SSc), while difficulties exist in controlling severe systematic side effects and enhancing targeting capacity. Here, inspired from the natural extracellular matrix composition, we propose a cyclophosphamide-encapsulated nanogel based on dendritic polymers polyamidoamine (PAMAM) for SSc treatment. We combine bovine serum albumin and generation 5 (G5) PAMAM dendrimers with polyphenol modification to obtain nanogels featured with antioxidant and anti-inflammatory effects.
View Article and Find Full Text PDFRev Neurosci
January 2025
Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
Essentially, the blood-brain barrier (BBB) serves as a line of demarcation between neural tissues and the bloodstream. A unique and protective characteristic of the blood-brain barrier is its ability to maintain cerebral homeostasis by regulating the flux of molecules and ions. The inability to uphold proper functioning in any of these constituents leads to the disruption of this specialized multicellular arrangement, consequently fostering neuroinflammation and neurodegeneration.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Freie Universität Berlin Fachbereich Biologie Chemie Pharmazie: Freie Universitat Berlin Fachbereich Biologie Chemie Pharmazie, Department of Biology, Chemistry, Pharmcy, Takustr. 3, 14195, Berlin, GERMANY.
Periodontitis is a microbe-driven inflammatory disease leading to bone resorption and tissue destruction. We propose a dual-functional nanogel complex armed with the antimicrobial drug triclosan (TCS) and the pro-angiogenesis medication deferoxamine (DFO) for combating microbial pathogens and promoting tissue regeneration. The nanogel system (NG-TCS-DFO) that we fabricated from linear polyglycerol exhibits well-defined spherical morphology and a positively charged surface for bacteria adhesion.
View Article and Find Full Text PDFPurpose: The main purpose of this study was to optimize a cyclodextrin-based nanogel of flurbiprofen (FP) for prolonged dermal administration and evaluate its stability, in vitro release, ex vivo skin permeation, and in vivo pharmacokinetic profile.
Methods: The nanogels were prepared via emulsification/solvent evaporation process and optimized through design of experiments. Optimal formulation was characterized via particle size (PS), polydispersity index (PDI), zeta potential (ZP), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD), solubility, stability, in vitro release/ex vivo permeation studies and mathematical modeling, and pharmacokinetic studies conducted in rats.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!