An improved synthesis of telmisartan the copper-catalyzed cyclization of -haloarylamidines.

RSC Adv

CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS) 555 Zuchongzhi Road Shanghai 201203 People's Republic of China

Published: April 2020

A concise synthetic route was designed for making telmisartan. The key bis-benzimidazole structure was constructed the copper-catalyzed cyclization of -haloarylamidines. By adopting this approach, telmisartan was obtained in a 7-step overall yield of 54% starting from commercially available 3-methyl-4-nitrobenzoic acid, and the use of HNO/HSO for nitration and polyphosphoric acid (PPA) for cyclization in the reported literatures were avoided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9051534PMC
http://dx.doi.org/10.1039/d0ra00886aDOI Listing

Publication Analysis

Top Keywords

copper-catalyzed cyclization
8
cyclization -haloarylamidines
8
improved synthesis
4
synthesis telmisartan
4
telmisartan copper-catalyzed
4
-haloarylamidines concise
4
concise synthetic
4
synthetic route
4
route designed
4
designed making
4

Similar Publications

Herein, we report a Cu-DTBP-catalyzed [3 + 2] cycloaddition reaction between 1-(2-oxo-2-phenylethyl)--indole-3-aldehyde and arylalkene, using DMF as the solvent. Under relatively mild reaction conditions, a series of indole compounds were synthesized in moderate yields (up to 73%). This protocol features good functional group tolerance and high atom economy.

View Article and Find Full Text PDF

A copper-catalyzed domino addition/cyclization reaction was developed to synthesize novel benzoselenazole-linked 1,2,3-triazole and tetracyclic fused 12-benzo[4,5]selenazole[2,3-]quinazolin-12-one derivatives from isoselenocyanates. This domino reaction efficiently constructed multiple new chemical bonds in a single step, forming either four (one C-Se and three C-) or three (one C-Se and two C-) bonds. The reaction offers several key advantages, including mild conditions, broad substrate compatibility, and straightforward and safe operation.

View Article and Find Full Text PDF

A facile copper-catalyzed, base-controlled cyclization reaction has been developed for the synthesis of 9-membered cycloalkyne and 6-membered heterocycle sultams under mild conditions. This protocol utilizes a copper-catalyzed intramolecular A (alkyne-aldehyde-amine) coupling reaction to efficiently synthesize 9-membered cycloalkyne sultams in yields up to 90%. Alternatively, by substituting NaHCO with DBU, the protocol achieves selective deprotection of the -propargyl group, thereby facilitating the formation of 6-membered heterocyclic sultams, also in high yields.

View Article and Find Full Text PDF

Complexity-generating reactions that access three-dimensional products from simple starting materials offer substantial value for drug discovery. While oxygen-containing heterocycles frequently feature unique, nonaromatic architectures such as spirocyclic rings, exploration of these chemical spaces is limited by conventional synthetic approaches. Herein, we report a copper-catalyzed annulation and alkene transposition cascade reaction that enables a modular preparation of complex, spirocyclic ethers from readily available alkenol substrates via a copper-catalyzed annulation and transannular 1,5-hydrogen atom transfer-mediated C-H functionalization.

View Article and Find Full Text PDF

Copper-Catalyzed Domino Phosphorylation/Cyclization of -Alkynylketones for Accessing Phosphorylated 1-Isochromenes.

J Org Chem

January 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.

An effective and economical copper-catalyzed approach for the synthesis of phosphorylated 1-isochromenes is reported. This method is the first example of focus on ketone phosphonylation to establish a C-P bond and 6-- cyclization to construct a C-O bond between aryl- and alkyl-substituted alkynylketones and H-phosphinate esters, H-phosphites, and H-phosphine oxides, resulting in chemo- and regioselective phosphorylated 1-isochromenes with moderate to excellent yields under smooth reaction conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!