Phenolic pollutants are highly toxic and persistent in the environment. Their efficient detection is a pressing social demand. In this regard we introduce a novel ultrasensitive electroanalytical platform for the individual and synchronized detection of three phenolic isomers commonly known as hydroquinone (HQ), resorcinol (RC), and catechol (CC). The sensing device consists of a glassy carbon electrode (GCE) modified with functionalized carbon nanotubes (fCNTs) and gold-silver (Au-Ag NPs) bimetallic nanoparticles. The sandwiched scaffold represented as fCNTs/Au-Ag NPs/fCNTs/GCE efficiently senses HQ, RC, and CC with detection limits of 28.6 fM, 36.5 fM and 42.8 fM respectively. The designed sensor is more promising than reported sensors for phenolic toxins in the context of high sensitivity, selectivity, and rapid responsiveness. The designed sensor also shows the qualities of stability, reproducibility, reliability, and selective recognition capacity for target analytes in multiple real water samples. Moreover, computational calculations explain the function of the electrode modifier in facilitating charge transfer between the transducer and analytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043152 | PMC |
http://dx.doi.org/10.1039/d1ra05669g | DOI Listing |
Nano Lett
December 2024
Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States.
Single-walled carbon nanotubes (SWCNTs) are fluorescent materials that have been developed as sensors for measuring the activities of enzymes. However, most sensors to date rely on end-point measurement and empirical functions to correlate enzyme concentrations with fluorescence responses. Less emphasis is put on analyzing time-dependent fluorescence responses and their connections with enzymatic kinetics.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level.
View Article and Find Full Text PDFFront Neurol
December 2024
School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
Purpose: This study aims to develop a assessment system for evaluating shoulder joint muscle strength in patients with varying degrees of upper limb injuries post-stroke, using surface electromyographic (sEMG) signals and joint motion data.
Methods: The assessment system includes modules for acquiring muscle electromyography (EMG) signals and joint motion data. The EMG signals from the anterior, middle, and posterior deltoid muscles were collected, filtered, and denoised to extract time-domain features.
Int J Bipolar Disord
December 2024
Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt am Main, Germany.
Background: Attention-deficit/hyperactivity disorder (ADHD) is a common neuro-developmental disorder that often persists into adulthood. Moreover, it is frequently accompanied by bipolar disorder (BD) as well as borderline personality disorder (BPD). It is unclear whether these disorders share underlying pathomechanisms, given that all three are characterized by alterations in affective states, either long or short-term.
View Article and Find Full Text PDFSci Rep
December 2024
Nuclear Engineering Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
This study proposes a novel, highly sensitive neutron detector design utilizing a unique multi-layered configuration. Each layer consists of a LiF: ZnS(Ag) scintillator coupled with a transparent neutron moderator that also functions as a light guide for the Silicon Photomultiplier (SiPM) light sensor. This design offers a cost-effective and readily available alternative for existing neutron detectors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!