A hybrid Cu-doped ZnO nanorods (ZnO:Cu NRs)/poly(3,4 ethylene dioxythiophene)-polystyrene sulfonate (PEDOT:PSS)-based photodetector was fabricated using a simple hydrothermal method with pre-patterned silver electrodes. In the hybrid structure, PEDOT:PSS with high mobility acts as a carrier transport layer, while ZnO:Cu NRs with high visible absorption works as an "antenna" material to generate electron-hole pairs under light illumination. As a result, the devices exhibits a high response in visible light at a wavelength of 395 nm. The responsivity and photoconductive gain of the hybrid photodetector reached 0.33 A W and 1.306, respectively, which is 1.36 times higher than those of Cu-doped ZnO NRs-based ones. The response and recovery times are improved, with values of 25.21 s and 42.01 s, respectively. The development of hybrid materials for visible photodetectors enables an innovative approach for future optoelectronic devices, especially optical sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043369PMC
http://dx.doi.org/10.1039/d1ra06315dDOI Listing

Publication Analysis

Top Keywords

hybrid materials
8
cu-doped zno
8
hybrid
5
visible
4
visible photodetector
4
photodetector based
4
based transition
4
transition metal-doped
4
metal-doped zno
4
zno nrs/pedotpss
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!