Hybrid organic-inorganic perovskite mixed halides of FAPbBr Cl and doped FAPb Sn Br were synthesized using a generalized inverse temperature crystallization (ITC) method. With an appropriate choice of solvents and crystallization temperatures we show that large millimeter sized single crystals of these hybrid perovskites can be grown in a matter of hours to days using ITC. The structural and optical properties of these single crystals were characterized systematically. The mixed metal and mixed halide perovskites displayed a compositional bandgap tuneability in the region of 2.05 eV to 2.57 eV. The electrical properties of the perovskite single crystals were determined using a space-charge limited current (SCLC) method. The trap density determined from SCLC was between 10 and 10 cm for all perovskites which is exceptionally low. The mobility was found to increase by one order of magnitude on the addition of only 3% Sn for FAPb Sn Br based perovskites which shows promise for enhancing the electrical properties. This demonstrates the generalizability of the ITC method to grow large high-quality perovskite single crystals with enhanced optical and electrical properties. In addition, it was observed for FAPbBr Cl based perovskites that initially degraded surfaces with suppressed PL emission could be repaired by using an anti-solvent treatment re-enabling the PL emission. Other perovskite compounds did not display any degraded surfaces and exhibited excellent stability in ambient conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048801PMC
http://dx.doi.org/10.1039/d0ra00060dDOI Listing

Publication Analysis

Top Keywords

single crystals
20
electrical properties
12
halide perovskites
8
inverse temperature
8
temperature crystallization
8
itc method
8
perovskite single
8
based perovskites
8
degraded surfaces
8
perovskites
6

Similar Publications

In this study, we synthesized 12 monofunctional tridentate ONS-donor salicylaldimine ligand ()-based Ru(II) complexes with general formula [(Ru()(-cymene)]·Cl (-), characterized by H NMR, C NMR, UV, FT-IR spectroscopy, HR-ESI mass spectrometry, and single-crystal X-ray analysis showing ligand's orientation around the Ru(II) center. All 12 of these 12 complexes were tested for their anticancer activities in multiple cancer cells. The superior antitumor efficacy of , , and was demonstrated by reduced mitochondrial membrane potential, impaired proliferative capacity, and disrupted redox homeostasis, along with enhanced apoptosis through caspase-3 activation and downregulation of Bcl-2 expression.

View Article and Find Full Text PDF

C1 chemistry has a central role in the efficient utilization of single-carbon molecules, contributing significantly to sustainability, innovation and economic growth across various sectors. In this study, we present an efficient and rapid method for synthesizing a variety of heteroannulated pyrimidones using cyanoacetamide-based multicomponent reaction (MCR) chemistry. By utilizing specific MCR-based scaffolds as precursors and employing the abundant and inexpensive formamide as a C1 feedstock under neat conditions, we were able to efficiently access substituted thieno-, quinolino- and indolopyrimidones without the need of column chromatography.

View Article and Find Full Text PDF

Organic compounds present promising options for sustainable zinc battery electrodes. Nevertheless, the electrochemical properties of current organic electrodes still lag behind those of their inorganic counterparts. In this study, nitro groups were incorporated into pyrene-4, 5, 9, 10-tetraone (PTO), resulting in an elevated discharge voltage due to their strong electron-withdrawing capabilities.

View Article and Find Full Text PDF

Mechanofluorochromic (MFC) materials are emerging as a versatile candidate for optoelectronic and biomedical applications. In the present work, we designed and synthesized four MFC materials, namely BT-PTZ-1, BT-PTZ-2, BT-PTZO-1, and BT-PTZO-2, using Suzuki cross-coupling reaction. These materials possess benzothiazole (BT) as an acceptor moiety and different donors, including phenothiazine (PTZ) and triphenylamine (TPA), with variations in their spacer units.

View Article and Find Full Text PDF

Self-assembly processes of 2D Au(I)-S(CH)COOH lamellae.

Nanoscale

January 2025

State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Solving the assembled structure of Au(I)-thiolate linear coordination polymers has been a challenging task as they generally lack good crystallinity. This has prevented the elucidation of their assembly processes at the molecular level. In this paper, selected area electron diffraction (SAED) patterns of two-dimensional (2D) Au(I)-S(CH)COOH (Au(I)-MPA) lamellae are obtained by applying cryogenic transmission electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!