Tadalafil and repaglinide, categorized as BCS class II drugs, have low oral bioavailabilities due to their poorly aqueous solubilities and dissolutions. The aim of this study was to enhance the dissolution of tadalafil and repaglinide by co-amorphization technology and evaluate the storage and compression stability of such coamorphous system. Based on Flory-Huggins interaction parameter ( ≤ 0) and Hansen solubility parameter ( ≤ 7 MPa) calculations, tadalafil and repaglinide was predicted to be well miscible with each other. Coamorphous tadalafil-repaglinide (molar ratio, 1 : 1) was prepared by solvent-evaporation method and characterized with respect to its thermal properties, possible molecular interactions. A single (73.1 °C) observed in DSC and disappearance of crystallinity in PXRD indicated the formation of coamorphous system. Principal component analysis of FTIR in combination with Raman spectroscopy and Ss C NMR suggested the absence of intermolecular interactions in coamorphous tadalafil-repaglinide. In comparison to pure crystalline forms and their physical mixtures, both drugs in coamorphous system exhibited significant increases in intrinsic dissolution rate (1.5-3-fold) and could maintain supersaturated level for at least 4 hours in non-sink dissolution. In addition, the coamorphous tadalafil-repaglinide showed improved stability compared to the pure amorphous forms under long-term stability and accelerated storage conditions as well as under high compressing pressure. In conclusion, this study showed that co-amorphization technique is a promising approach for improving the dissolution rate of poorly water-soluble drugs and for stabilizing amorphous drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9048229 | PMC |
http://dx.doi.org/10.1039/c9ra07149k | DOI Listing |
Mol Pharm
January 2025
Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.
Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.
View Article and Find Full Text PDFPharmaceutics
November 2024
School of Pharmacy, Jilin Medical University, Jilin 132013, China.
: Supersaturating drug delivery systems (SDDSs) have gained significant attention as a promising strategy to enhance the solubility and bioabsorption of Biopharmaceutics Classification System (BCS) II drugs. To overcome challenges associated with polymer-based amorphous SDDS (aSDDS), coamorphous (CAM) systems have emerged as a viable alternative. Among them, "drug-drug" CAM (ddCAM) systems show considerable potential for combination drug therapy.
View Article and Find Full Text PDFInt J Pharm
December 2024
Center for Science of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil. Electronic address:
This study reports the synthesis and the experimental-theoretical characterization of a new coamorphous system consisting of ethionamide (ETH) and mandelic acid (MND) as a coformer. The solid dispersion was synthesized using the slow solvent evaporation method in an ethanolic medium. The structural, vibrational, and thermal properties of the system were characterized.
View Article and Find Full Text PDFInt J Pharm
December 2024
School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China. Electronic address:
The coamorphous formulations have attracted increasing interest due to enhanced solubility and bioavailability, together with synergistic pharmacological effects. In this study, a ternary coamorphous system of polyphenols was successfully prepared, wherein baicalein (Bai) and resveratrol (Res) were constructed into a single-phase coamorphous system mediated by piperine (Pip). FTIR and ss C NMR spectra together with quantum chemical calculation and molecular dynamics simulation suggested Pip as a molecular bridge connected Bai and Res molecules through π-π stacking and hydrogen bonding interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!