Early diagnosis of cancer biomarkers is the key to guiding treatments and improving the survival rate of patients. Herein, we report a novel surface-enhanced resonance Raman scattering (SERRS)-based lateral flow immunoassay (LFIA) for quantitative and ultra-sensitive analysis of alpha-fetoprotein (AFP). Gold nanorods (AuNRs) were fabricated to be in resonance with 785 nm laser excitation, that is, the excitation level that can maximize SERRS activity. The AuNRs were modified with 5,5'-dithiobis(2-nitrobenzoic acid), bovine serum albumin (BSA), and AFP detection antibody successively as the SERRS nanotags for the LFIA system. Modification of the BSA layer guaranteed good stability and biocompatibility of the SERRS nanotags in complex samples. The SERRS-LFIA strip for AFP detection showed a low detection limit of 9.2 pg mL and a broad detection range from 10 pg mL to 500 ng mL. By comparison, the detection limit of the proposed assay is about 100 and 10 times lower than those of the Au nanoparticle-based SERS-strip and conventional enzyme-linked immunosorbent assay, respectively. Moreover, the potential clinical applications of the assay were evaluated by detecting 10 actual serum samples. Results showed 100% accuracy based on the clinical tests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9047559PMC
http://dx.doi.org/10.1039/c9ra09471gDOI Listing

Publication Analysis

Top Keywords

quantitative ultra-sensitive
8
serrs-based lateral
8
lateral flow
8
flow immunoassay
8
bovine serum
8
serum albumin
8
afp detection
8
serrs nanotags
8
detection limit
8
detection
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!