Motor imagery-based brain-computer interface (MI-BCI) currently represents a new trend in rehabilitation. However, individual differences in the responsive frequency bands and a poor understanding of the communication between the ipsilesional motor areas and other regions limit the use of MI-BCI therapy. Bimanual training has recently attracted attention as it achieves better outcomes as compared to repetitive one-handed training. This study compared the effects of three MI tasks with different visual feedback. Fourteen healthy subjects performed single hand motor imagery tasks while watching single static hand (traditional MI), single hand with rotation movement (rmMI), and bimanual coordination with a hand pedal exerciser (bcMI). Functional connectivity is estimated by Transfer Entropy (TE) analysis for brain information flow. Brain connectivity of conducting three MI tasks showed that the bcMI demonstrated increased communications from the parietal to the bilateral prefrontal areas and increased contralateral connections between motor-related zones and spatial processing regions. The results revealed bimanual coordination operation events increased spatial information and motor planning under the motor imagery task. And the proposed bimanual coordination MI-BCI (bcMI-BCI) can also achieve the effect of traditional motor imagery tasks and promotes more effective connections with different brain regions to better integrate motor-cortex functions for aiding the development of more effective MI-BCI therapy. The proposed bcMI-BCI provides more effective connections with different brain areas and integrates motor-cortex functions to promote motor imagery rehabilitation for patients' impairment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041539 | PMC |
http://dx.doi.org/10.1109/JTEHM.2022.3167552 | DOI Listing |
PLoS One
January 2025
Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.
Background: Motor imagery is the mental representation of a movement without physical execution. When motor imagery is performed to enhance motor learning and performance, participants must reach a temporal congruence between the imagined and actual movement execution. Identifying factors that can influence this capacity could enhance the effectiveness of motor imagery programs.
View Article and Find Full Text PDFBrain Behav
January 2025
School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
Background: Different modes of motor acquisition, including motor execution (ME), motor imagery (MI), action observation (AO), and mirror visual feedback (MVF), are often used when learning new motor behavior and in clinical rehabilitation.
Purpose: The aim of this study was to investigate differences in brain activation during different motor acquisition modes among healthy young adults.
Methods: This cross-sectional study recruited 29 healthy young adults.
Front Neurol
December 2024
Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel.
Children with attention deficit hyperactivity disorder (ADHD) exhibit various degrees of motor and cognitive impairments in fine and gross motor skills. These impairments impact social functioning, while also hindering academic achievement, self-esteem, and participation. Specifically, motor impairments are not fully addressed by current therapies.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11543, Saudi Arabia.
One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs.
View Article and Find Full Text PDFLife (Basel)
December 2024
CESPU, Instituto Politécnico de Saúde do Norte, Escola Superior de Saúde do Vale do Ave, 4760-409 Vila Nova de Famalicão, Portugal.
Arthrogenic muscle inhibition (AMI) following ACL injury or reconstruction is a common issue that affects muscle activation and functional recovery. Thus, the objective of this study was to systematize the literature on the effects of physiotherapy interventions in the rehabilitation of AMI after ACL injury or reconstruction. A systematic review was conducted following the PRISMA guidelines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!