A percolating network of high electrical conductivity needed to operate electrodes at a fast rate can be formed by reduction of Ag originating from mixed metal oxide lattices, but few studies have elucidated trends in this mechanism as a function of Ag concentration and structure. Candidates compared for the first time here are spinel AgMoO, monoclinic and triclinic AgMoO, and AgMoO·2HO, which have reduction potentials for Ag and Mo strongly decoupled by up to ∼600 mV in aqueous zinc-ion electrolyte. Under these conditions, Ag is the first reduction product and a decrease of charge transfer resistance by ∼100× is observed within 2.5% consumption of total Ag independent of initial structure. However, resistance metrics alone poorly describe materials which are robust to reducing silver with high energy at faster rates. Instead, after accounting for crystallinity and morphology differences, we find that the acidity of the molybdate framework is responsible for a switch in charge balance mechanism from the bulk formation of a mixed ZnMoO to pseudocapacitive Zn precipitation, and that this mechanism switch is associated with minimized losses to rate, voltage and capacity yields as carbon/binder free electrodes relative to composites. The location of this acidity cutoff near the pH of the ZnSO electrolyte may suggest a design principle for future low-carbon electrodes beyond molybdate framework structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044464 | PMC |
http://dx.doi.org/10.1039/d1ra07765a | DOI Listing |
Theranostics
January 2025
Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University 510515, Guangzhou, Guangdong Province, China.
Photodynamic therapy (PDT) has gained widespread attention in cancer treatment, but it still faces clinical problems such as skin phototoxicity. Activatable photosensitizers offer a promising approach to addressing this issue. However, several significant hurdles need to be overcome, including developing effective activation strategies and achieving the optimal balance between photodynamic effects and related side effects.
View Article and Find Full Text PDFFront Pharmacol
December 2024
School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
Background: Salvianolic acid B (Sal B) is potentially the most valuable water-soluble active component in Salvia miltiorrhiza. Its chemical formula contains multiple phenolic hydroxyl groups, so it has a strong antioxidant capacity.
Objective: We aim to investigate the efficacy and the potential mechanism of Sal B in the treatment of acute ischemic stroke injury.
PLoS One
January 2025
College of Engineering, Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
The expansion of electric vehicles (EVs) challenges electricity grids by increasing charging demand, thereby making Demand-Side Management (DSM) strategies essential to maintaining balance between supply and demand. Among these strategies, the Valley-Filling approach has emerged as a promising method to optimize renewable energy utilization and alleviate grid stress. This study introduces a novel heuristic, Load Conservation Valley-Filling (LCVF), which builds on the Classical and Optimistic Valley-Filling approaches by incorporating dynamic load conservation principles, enabling better alignment of EV charging with grid capacity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China Normal University, Chemistry, 55 W Zhongshan Rd, 510006, Guangzhou, CHINA.
LiCoO2 batteries for 3C electronics demand high charging voltage and wide operating temperature range, which are virtually impossible for existing electrolytes due to aggravated interfacial parasitic reactions and sluggish kinetics. Herein, we report an electrolyte design strategy based on a partially fluorinated ester solvent (i.e.
View Article and Find Full Text PDFThe growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!