Porphyromonas gingivalis, a keystone pathogen in periodontitis (PD), produces cysteine proteases named gingipains (RgpA, RgpB, and Kgp), which strongly affect the host immune system. The range of action of gingipains is extended by their release as components of outer membrane vesicles, which efficiently diffuse into surrounding gingival tissues. However, away from the anaerobic environment of periodontal pockets, increased oxygen levels lead to oxidation of the catalytic cysteine residues of gingipains, inactivating their proteolytic activity. In this context, the influence of catalytically inactive gingipains on periodontal tissues is of significant interest. Here, we show that proteolytically inactive RgpA induced a proinflammatory response in both gingival keratinocytes and dendritic cells. Inactive RgpA is bound to the cell surface of gingival keratinocytes in the region of lipid rafts, and using affinity chromatography, we identified RgpA-interacting proteins, including epidermal growth factor receptor (EGFR). Next, we showed that EGFR interaction with inactive RgpA stimulated the expression of inflammatory cytokines. The response was mediated via the EGFR-phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which when activated in the gingival tissue rich in dendritic cells in the proximity of the alveolar bone, may significantly contribute to bone resorption and the progress of PD. Taken together, these findings broaden our understanding of the biological role of gingipains, which in acting as proinflammatory factors in the gingival tissue, create a favorable milieu for the growth of inflammophilic pathobionts. Gingipain cysteine proteases are essential virulence factors of Porphyromonas gingivalis, an oral bacterium implicated in development of periodontitis. Gingipains diffusing from anaerobic periodontal pockets lose proteolytic activity in the oxygenated environment of gingival tissues. We found that despite the loss of activity, gingipains still elicit a strong inflammatory response, which may contribute to the progression of periodontitis and bone resorption. Moreover, we identified the host molecules utilized by the pathogen as receptors for proteolytically inactivated gingipains. The broad distribution of those receptors in human tissue suggests their involvement in systemic diseases associated with periodontal pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239244PMC
http://dx.doi.org/10.1128/mbio.03787-21DOI Listing

Publication Analysis

Top Keywords

porphyromonas gingivalis
12
inactive rgpa
12
gingipains
9
cysteine proteases
8
gingival tissues
8
periodontal pockets
8
proteolytic activity
8
gingival keratinocytes
8
dendritic cells
8
gingival tissue
8

Similar Publications

Objectives: To evaluate the treatment of peri-implant mucositis (PM) using a nonsurgical submarginal peri-implant instrumentation (NSPI) with or without chlorhexidine (CHX) solutions.

Methods: Fifty-six patients (28 per group) were randomly assigned to the test (NSPI + 0.12% mouthwash and subgingival CHX irrigation plus tongue brushing with 1% CHX gel) or the control group (NSPI + placebo mouthwash and subgingival placebo irrigation plus tongue brushing with placebo gel).

View Article and Find Full Text PDF

BACKGROUND Periodontal disease and rheumatoid arthritis (RA) are closely related, and periodontal therapy can potentially improve RA activity. However, it is not clear in which RA patient populations are more effective periodontal therapy for RA treatment. This study aimed to evaluate the effects of treatment for periodontal disease in 30 patients with rheumatoid arthritis and the titers of antibodies to Porphyromonas gingivalis (P.

View Article and Find Full Text PDF

Alzheimer's Disease and : Exploring the Links.

Life (Basel)

January 2025

Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske nam. 14, 811 08 Bratislava, Slovakia.

Recent research highlights compelling links between oral health, particularly periodontitis, and systemic diseases, including Alzheimer's disease (AD). Although the biological mechanisms underlying these associations remain unclear, the role of periodontal pathogens, particularly , has garnered significant attention. , a major driver of periodontitis, is recognized for its potential systemic effects and its putative role in AD pathogenesis.

View Article and Find Full Text PDF

This systematic review assesses and compares the presence and relative abundance of periodontal pathogens, human herpesviruses (HHVs), and fungi in subgingival and/or saliva samples from pediatric subjects (≤18 years of age) with periodontally healthy status and with gingivitis and/or periodontitis. The study protocol was conducted under the PRISMA statement and registered on PROSPERO (CRD42024593007). Data from seven studies were descriptively analyzed and qualitatively assessed through the ROBINS-1 and JBI tools.

View Article and Find Full Text PDF

Periodontal pathogens and obesity in the context of cardiovascular risks across age groups.

Front Oral Health

January 2025

Department of Cardiovascular Pathology and Diet Therapy, Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow, Russia.

Background: Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity among noncommunicable diseases. Over the past decade, there has been a notable increase in the prevalence of CVDs among young individuals. Obesity, a well-known risk factor for CVDs, is also associated with various comorbidities that may contribute to cardiovascular risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!