Dickeya dadantii is a phytopathogenic bacterium that causes soft rot in a wide range of plant hosts worldwide and a model organism for studying virulence gene regulation. The present study provides a comprehensive and annotated transcriptomic map of obtained by a computational method combining five independent transcriptomic data sets: (i) paired-end RNA sequencing (RNA-seq) data for a precise reconstruction of the RNA landscape; (ii) DNA microarray data providing transcriptional responses to a broad variety of environmental conditions; (iii) long-read Nanopore native RNA-seq data for isoform-level transcriptome validation and determination of transcription termination sites; (iv) differential RNA sequencing (dRNA-seq) data for the precise mapping of transcription start sites; (v) DNA microarray data for a comparison of gene expression profiles between experiments and the early stages of plant infection. Our results show that transcription units sometimes coincide with predicted operons but are generally longer, most of them comprising internal promoters and terminators that generate alternative transcripts of variable gene composition. We characterize the occurrence of transcriptional read-through at terminators, which might play a basal regulation role and explain the extent of transcription beyond the scale of operons. We finally highlight the presence of noncontiguous operons and excludons in the genome, novel genomic arrangements that might contribute to the basal coordination of transcription. The highlighted transcriptional organization may allow to finely adjust its gene expression program for a rapid adaptation to fast-changing environments. This is the first transcriptomic map of a species. It may therefore significantly contribute to further progress in the field of phytopathogenicity. It is also one of the first reported applications of long-read Nanopore native RNA-seq in prokaryotes. Our findings yield insights into basal rules of coordination of transcription that might be valid for other bacteria and may raise interest in the field of microbiology in general. In particular, we demonstrate that gene expression is coordinated at the scale of transcription units rather than operons, which are larger functional genomic units capable of generating transcripts with variable gene composition for a fine-tuning of gene expression in response to environmental changes. In line with recent studies, our findings indicate that the canonical operon model is insufficient to explain the complexity of bacterial transcriptomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239193 | PMC |
http://dx.doi.org/10.1128/mbio.00524-22 | DOI Listing |
Int J Biol Markers
January 2025
Department of Respiratory and Critical Care Medicine, Anyue County People's Hospital, Anyue, China.
Purpose: To detect the prognostic importance of liquid-liquid phase separation (LLPS) in lung adenocarcinoma.
Methods: The gene expression files, copy number variation data, and clinical data were downloaded from The Cancer Genome Atlas cohort. LLPS-related genes were acquired from the DrLLPS website.
Hum Gene Ther
January 2025
Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
Cystic fibrosis (CF) is caused by mutations in the (). While gene therapy holds promise as a cure, the cell-type-specific heterogeneity of expression in the lung presents significant challenges. Current CF ferret models closely replicate the human disease phenotype but have limitations in studying functional complementation through cell-type-specific CFTR restoration.
View Article and Find Full Text PDFOncol Rep
March 2025
Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.
Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.
View Article and Find Full Text PDFInt J Mol Med
March 2025
Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan, R.O.C.
Oral squamous cell carcinoma (OSCC) is a type of head and neck cancer (HNC) with a high recurrence rate, which has been reported to be associated with the presence of cancer stem cells (CSCs). Tribbles pseudokinase 3 (TRIB3) is involved in intracellular signaling and the aim of the present study was to investigate the role of TRIB3 in the maintenance of CSCs. Analysis of The Cancer Genome Atlas database samples demonstrated a positive correlation between TRIB3 expression levels and shorter overall survival rates in patients with HNC.
View Article and Find Full Text PDFOncol Rep
February 2025
Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China.
Pancreatic cancer is an aggressive tumor, which is often associated with a poor clinical prognosis and resistance to conventional chemotherapy. Therefore, there is a need to identify new therapeutic markers for pancreatic cancer. Although KIN17 is a highly expressed DNA‑ and RNA‑binding protein in a number of types of human cancer, its role in pancreatic cancer development, especially in relation to progression, is currently unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!