Background: Subthalamic nucleus deep brain stimulation (STN-DBS) is a well-established treatment for patients with Parkinson's disease. Previous acute challenge studies suggested that short pulse widths might increase the therapeutic window while maintaining motor symptom control with a decrease in energy consumption. However, only little is known about the effect of short pulse width stimulation beyond the setting of an acute challenge.

Objective: To compare 4 weeks of STN-DBS with conventional pulse width stimulation (60 μs) to 4 weeks of STN-DBS with short pulse width stimulation (30 μs) regarding motor symptom control.

Methods: This study was a monocentric, double-blinded, randomized crossover non-inferiority trial investigating whether short pulse width stimulation with 30 μs maintains equal motor control as conventional 60 μs stimulation over a period of 4 weeks (German Clinical Trials Register No. DRKS00017528). Primary outcome was the difference in motor symptom control as assessed by a motor diary. Secondary outcomes included energy consumption measures, non-motor effects, side-effects, and quality of life.

Results: Due to a high dropout rate, the calculated sample size of 27 patients was not met and 24 patients with Parkinson's disease and STN-DBS were included in the final analysis. However, there were no differences in any investigated outcome parameter between the two treatment conditions.

Conclusion: This study demonstrates that short pulse width settings (30 μs) provide non-inferior motor symptom control as conventional (60 μs) stimulation without significant differences in energy consumption. Future studies are warranted to evaluate a potential benefit of short pulse width settings in patients with pronounced dyskinesia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9398064PMC
http://dx.doi.org/10.3233/JPD-213119DOI Listing

Publication Analysis

Top Keywords

pulse width
28
short pulse
24
motor symptom
16
width stimulation
16
parkinson's disease
12
symptom control
12
energy consumption
12
stimulation μs
12
pulse
8
conventional pulse
8

Similar Publications

Mechanisms driving different QPD cells response signals revealed by a single cell irradiated with a laser.

Sci Rep

January 2025

Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Science, Changchun, 130022, Jilin, China.

The response mechanism of a Four-Quadrant Photodetector (QPD) in an experimental setting was studied by irradiating a single QPD cell with a millisecond-pulsed laser. The response signal of the irradiated QPD cell varied with energy flux, pulse width, and applied bias, and comprised four main stages: an initial stage, decreasing barrier stage, holding stage, and recovery stage. Not only was the response signal of the irradiated cell affected by laser irradiation, but also the responses of the other three cells.

View Article and Find Full Text PDF

Development of a 300 kV/3 kHz nanosecond pulse generator using semiconductor opening switches.

Rev Sci Instrum

January 2025

State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

In this paper, we present the development of a nanosecond pulse generator utilizing semiconductor opening switches (SOS), designed to deliver high voltage and operate at a high repetitive frequency. The pulse generator comprises three main components: a primary charging unit, a magnetic pulse compression unit, and an SOS magnification unit. To ensure stable operation of the high-power charging unit at high repetitive frequencies, a rectifying resonant charging and energy recovery circuit are implemented, providing a 1 kV charging voltage at a 3 kHz repetition rate.

View Article and Find Full Text PDF

Traditional beat frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) are limited by short energy accumulation times and the necessity of a decay period, leading to weaker signals and longer measurement cycles. Herein, we present a novel optomechanical energy-enhanced (OEE-) BF-QEPAS technique for fast and sensitive gas sensing. Our approach employs periodic pulse-width modulation (PWM) of the laser signal with an optimized duty cycle, maintaining the quartz tuning fork's (QTF) output at a stable steady-state level by applying stimulus signals at each half-period and allowing free vibration in alternate half-periods to minimize energy dissipation.

View Article and Find Full Text PDF

Role of en-APTAS Membranes in Enhancing the NO Gas-Sensing Characteristics of Carbon Nanotube/ZnO-Based Memristor Gas Sensors.

Biosensors (Basel)

December 2024

Department of Semiconductor Systems Engineering, Convergence Engineering for Intelligent Drone, Institute of Semiconductor and System IC, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.

NO is a toxic gas that can damage the lungs with prolonged exposure and contribute to health conditions, such as asthma in children. Detecting NO is therefore crucial for maintaining a healthy environment. Carbon nanotubes (CNTs) are promising materials for NO gas sensors due to their excellent electronic properties and high adsorption energy for NO molecules.

View Article and Find Full Text PDF

Objective: Targeted transcutaneous electrical nerve stimulation (tTENS) is a non-invasive neural stimulation technique that involves activating sensory nerve fibers to elicit tactile sensations in a distal, or referred, location. Though tTENS is a promising approach for delivering haptic feedback in virtual reality or for use by those with somatosensory deficits, it was not known how the perception of tTENS might be influenced by changing wrist position during sensorimotor tasks.

Approach: We worked with 12 able-bodied individuals and delivered tTENS by placing electrodes on the wrist, thus targeting the ulnar, median, and radial nerves, and eliciting tactile sensations in the hand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!