Here, a colorimetric aptasensor was constructed for sensitively detecting quinclorac (QNC), a common herbicide. The aptasensor involved a novel amplification strategy and a classical strand displacement strategy. The amplification strategy, termed exonuclease III (Exo III)-assisted cyclic release of phosphorodiamidate morpholino oligomer (PMO) mimic enzyme strategy, was developed based on two new findings on PMO: 1) DNA hybridized with PMO could resist Exo III digestion; 2) a designed G-rich PMO (named P2) could bind to hemin to form a G-quadruplex PMOzyme with peroxidase-like activity. In this strategy, a designed DNA-PMO duplex (D1-P1) completely hybridized with DNA2 (D2) in the other designed DNA-PMO duplex (D2-P2) to trigger D2 degradation by Exo III and cyclic release of P2. After that, the hemin-binding P2 catalyzed colorless tetra-methyl benzidine (TMB) to blue TMB. The cycle process was performed at high Exo III concentrations without strict control and with constant background signals. In that case, the developed strategy was sensitive, efficient, easy to operate, reliable, and ultralow background. Meanwhile, a QNC aptamer was used to develop the strand displacement strategy based on magnetic beads. The colorimetric aptasensor was sensitive and selective for QNC detection with a detection limit of 7.1 ng mL. It was successfully applied to detect QNC in soil and river water with good recovery rates (92-98%) and a relative standard deviation (n = 3) <5%. The success of this study could provide a general reference strategy for developing sensitive aptasensors and other nucleic acid-related sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2022.339815DOI Listing

Publication Analysis

Top Keywords

colorimetric aptasensor
12
cyclic release
12
exo iii
12
aptasensor sensitive
8
iii-assisted cyclic
8
release phosphorodiamidate
8
phosphorodiamidate morpholino
8
morpholino oligomer
8
mimic enzyme
8
strategy
8

Similar Publications

Dual-mode colorimetric and chemiluminescence aptasensor for organophosphorus pesticides detection using aptamer-regulated peroxidase-like activity of TA-Cu.

Talanta

December 2024

Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 of 13th Street, TEDA, Tianjin, 300457, PR China. Electronic address:

The residues of organophosphorus pesticides (OPs) in food pose a huge threat to human health. Therefore, the development of detection methods with simple design and high sensitivity is urgently needed. Here, a colorimetric/chemiluminescence (CL) dual-mode aptasensor strategy with high selectivity and sensitivity for detecting Parathion-methyl (PM) was designed based on aptamer-regulated nanozyme activity.

View Article and Find Full Text PDF

Ochratoxin A (OTA) is a compound of concern due to its potential health effects on humans. Detecting OTA in food is crucial for safeguarding public health. In this study, we fabricated a multi-DNAzyme cascade reaction-mediated colorimetric aptasensors for OTA detection, integrating autocatalytic Mg-dependent DNAzyme cleavage (MNAzyme) and an entropy-driven circuit.

View Article and Find Full Text PDF

Antibiotic contaminants in food are associated with detrimental health issues, and thus, the design of rapid and reliable detection methods to monitor them is in high demand. Although colorimetric aptamer sensing methods can achieve accurate and quick visual read-out analysis, they still have morphological defects that affect the detection efficiency and stability of the aptasensor. Hence, a simple and highly selective iron oxide/graphene oxide (FeO/GO) nanospheres was developed and modified with an aptamer as nanozymes for colorimetric detection of tobramycin (Tob).

View Article and Find Full Text PDF

Leuco-malachite green (LMG) and leuco-crystal violet (LCV) are widespread co-pollutants in aquatic products that pose a severe threat to human health. Therefore, it is urgent and challenging to develop rapid multiplex detection of LMG and LCV. Herein, the bispecific aptamer (A5b) for LMG and LCV was characterized.

View Article and Find Full Text PDF

A dual-switch electrochemical aptasensor for label-free detection of thrombin and ATP based on split aptamers.

Anal Chim Acta

January 2025

Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China. Electronic address:

Background: Aptamers, consisting of specialized single-stranded nucleic acids, are engineered through the SELEX technique to recognize specific targets with strong affinity. Aptamers are exceptionally useful in various sensor technologies, such as fluorescence-based sensors, electrochemical sensors, and colorimetric detection systems. Due to its high sensitivity, specificity and fast response, electrochemical aptasensor shows great application prospects in analytical detection, food safety, and environmental monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!