A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of DNA Methylation on the 3'→5' Exonuclease Activity of Major Human Abasic Site Endonuclease APEX1. | LitMetric

Apurinic/apyrimidinic (AP) endonucleases are the key enzymes in the DNA base excision repair, as they hydrolyze the phosphodiester bond in the AP site formed after removal of the damaged base. Major human AP endonuclease APEX1 also possesses the 3'-phosphodiesterase and 3'→5' exonuclease activities. The biological role of the latter has not been established yet; it is assumed that it corrects DNA synthesis errors during DNA repair. If DNA is damaged at the 3'-side of 5-methylcytosine (mC) residue, the 3'→5' exonuclease activity can change the epigenetic methylation status of the CpG dinucleotide. It remains unclear whether the 3'→5' exonuclease activity of APEX1 contributes to the active epigenetic demethylation or, on the contrary, is limited in the case of methylated CpG dinucleotides in order to preserve the epigenetic status upon repair of accidental DNA damage. Here, we report the results of the first systematic study on the efficiency of removal of 3'-terminal nucleotides from the substrates modeling DNA repair intermediates in the CpG dinucleotides. The best substrates for the 3'→5' exonuclease activity of APEX1 were oligonucleotides with the 3'-terminal bases non-complementary to the template, while the worst substrates contained mC. The presence of mC in the complementary strand significantly reduced the reaction rate even for the non-complementary 3'-ends. Therefore, the efficiency of the 3'→5' exonuclease reaction catalyzed by APEX1 is limited in the case of the methylated CpG dinucleotides, which likely reflects the need to preserve the epigenetic status during DNA repair.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0006297922010023DOI Listing

Publication Analysis

Top Keywords

3'→5' exonuclease
24
exonuclease activity
16
dna repair
12
cpg dinucleotides
12
dna
8
major human
8
endonuclease apex1
8
activity apex1
8
limited case
8
case methylated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!