Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Zizania latifolia is a wild rice that contains phytoliths (Phyt) that have considerable potential for carbon sequestration. We hypothesized that the capacity of phytolith-occluded carbon (PhytOC) sequestration in residues might increase by 20%, and economic profit would be twice as high under a rice/single-season Z. latifolia rotation as under rice monoculture. To test this hypothesis, we collected rice and Z. latifolia plants and their corresponding soil samples from Zhejiang Province to determine the ability of both crops to fix carbon in the phytoliths. We showed that the soil concentrations of available Si, total carbon (Ctot) and total nitrogen (N) were highly positively correlated with the concentrations of phytoliths and phytolith-occluded carbon in the residues of both crops. The cold waterlogged paddy fields in China have low productivity but their environmental conditions are suitable for planting Z. latifolia. Our model scenario, built on secondary data, demonstrated that, on a national basis, if the cold waterlogged paddy fields (occupying approximately 15% of the total paddy fields) were under rice/single-season Z. latifolia rotation, the contents of phytoliths and PhytOC in rice and Z. latifolia residues would be up to 19.46 × 10 t yr and 8.82 × 10 t yr (0.32 Tg CO yr), respectively. As a result, the economic benefit would be increased by 1.12 × 10 USD per year compared to rice monoculture. Therefore, adopting rotational cropping of rice with single-season Z. latifolia will not only increase the content of PhytOC sequestration in residues and improve cold waterlogged paddy fields but also bring economic benefits to farmers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155504 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!