AI Article Synopsis

  • Growing evidence indicates that arsenic exposure can lead to increased risks of chronic diseases and cancers linked to inflammation.
  • A previous study showed that arsenic-exposed newborns had higher inflammatory gene activity and DNA damage due to hypomethylation of gene promoters.
  • The current research demonstrates that methyl group donors like S-adenosyl methionine (SAM) and folic acid can reverse this hypomethylation, reduce inflammatory gene expression, and lower DNA damage markers in human cells, suggesting their potential as preventive measures against arsenic toxicity.

Article Abstract

Growing evidence suggests that arsenic exposure increases the risk of developing a variety of inflammation-associated chronic diseases and cancers. Our previous study revealed that increased transcript levels of inflammatory genes (i.e. COX2, EGR1, and SOCS3) coupled with hypomethylation of the promoter regions of these genes was associated with increased DNA damage in arsenic-exposed newborns through their early childhood. This study further investigated the ability of the methyl group donors, S-adenosyl methionine (SAM) and folic acid, to prevent promoter hypomethylation that results in decreased mRNA expression of inflammatory genes (COX2, EGR1, and SOCS3), and a reduction in arsenic-induced oxidative and nitrative DNA damage in human lymphoblast cells. Pretreatment with SAM (100 nM, 2 days) increased promoter methylation, reduced the mRNA levels of these inflammatory genes, and decreased both 8-hydroxydeoxyguanosine (8-OHdG) and 8-nitroguanine levels by 50% (p < 0.01) in arsenic-treated cells. In addition, pretreatment with folic acid (10 μM, 7 days), a micronutrient, led to a significant increase in promoter methylation associated with the reduction in mRNA levels of these inflammatory genes and decreased levels of 8-OHdG and 8-nitroguanine by 80% and 90% (p < 0.01), respectively, compared with arsenic treatment alone. Moreover, pretreatments with these methyl group donors increased mRNA expression of an antioxidant defense regulator (Nrf2) and DNA repair genes (hOGG1, XRCC1, and PARP1). This study shows for the first time that SAM or folic acid supplementation can prevent arsenic-induced oxidative and nitrative DNA damage. This suggests the potential use of SAM or folic acid for prevention of arsenic toxicity in human populations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2022.109965DOI Listing

Publication Analysis

Top Keywords

dna damage
12
inflammatory genes
12
sam folic
8
folic acid
8
acid prevent
8
arsenic-induced oxidative
8
oxidative nitrative
8
nitrative dna
8
damage human
8
human lymphoblast
8

Similar Publications

Marek's Disease (MD), which can result in neurological damage and tumour formation, has large effects on the economy and animal welfare of the poultry industry worldwide. Previously, we mapped autosomal MD QTL regions (QTLRs) by individual genotyping of an F population from a full-sib advanced intercross line. We further mapped MD QTLRs on the chicken Z chromosome (GGZ) using the same F population, and by selective DNA pooling (SDP) of 8 elite egg production lines.

View Article and Find Full Text PDF

Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis.

View Article and Find Full Text PDF

Delirium is a neuropsychiatric syndrome commonly presenting during acute illness. The pathophysiology of delirium is unknown, but neuroinflammation is suggested to play a role. In this cross-sectional study, we aimed to investigate whether cell-free DNA and markers of neutrophil extracellular traps in serum and CSF were associated with delirium and neuronal damage, assessed by neurofilament light chain.

View Article and Find Full Text PDF

Objective: Gestational diabetes mellitus (GDM) is a common complication during pregnancy and increases the risk of metabolic diseases in offspring. We hypothesize that the poor intrauterine environment in pregnant women with GDM may lead to chromosomal DNA damage and telomere damage in umbilical cord blood cells, providing evidence of an association between intrauterine programming and increased long-term metabolic disease risk in offspring.

Methods: We measured telomere length (TL), serum telomerase (TE) activity, and oxidative stress markers in umbilical cord blood mononuclear cells (CBMCs) from pregnant women with GDM (N=200) and healthy controls (Ctrls) (N=200) and analysed the associations of TL with demographic characteristics, biochemical indicators, and blood glucose levels.

View Article and Find Full Text PDF

Effect of freezing and thawing on ejaculated sperm and subsequent pregnancy and neonatal outcomes in IVF.

Front Endocrinol (Lausanne)

December 2024

Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: Techniques for sperm cryopreservation have exhibited their potential in male fertility preservation. The use of frozen-thawed sperm in fertilization (IVF) cycles is widespread today. However, many studies reported that cryopreservation might have adverse effects on sperm DNA integrity, motility, and fertilization, probably due to cold shock, intra- and extracellular ice crystals, and excess reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!