Euglena gracilis (EUG) is a food supplement rich in beta-glucans, which are stored in the form of granules called paramylon. We determined whether EUG improved chemotherapy-induced leukocytopenia and dysbiosis. Mice were orally administered EUG prior to gemcitabine treatment. Analyses of the blood cell count, leukocyte population in the spleen, granulocyte/macrophage-colony-stimulating factor (GM-CSF) production by splenocytes, and fecal microbiome were conducted. The recovery of total leukocytes, neutrophils, and monocytes was accelerated after a single gemcitabine treatment. A more rapid lymphocyte recovery rate was observed after four gemcitabine treatments. No difference was observed in the percentage of T, B, or myeloid cells or in the expression of Dectin-1 in the spleens of the gemcitabine and EUG/gemcitabine groups. The EUG/gemcitabine group showed an enhanced GM-CSF production by lipopolysaccharides-stimulated splenocytes. Next-generation sequencing revealed that gemcitabine-induced dysbiosis was alleviated. This study demonstrated that EUG-derived beta-glucans could act as a biological response modifier as well as prebiotics for ameliorating chemotherapy-induced adverse effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.04.168DOI Listing

Publication Analysis

Top Keywords

euglena gracilis
8
chemotherapy-induced leukocytopenia
8
dysbiosis mice
8
gemcitabine treatment
8
gm-csf production
8
oral administration
4
administration euglena
4
gracilis paramylon
4
paramylon ameliorates
4
ameliorates chemotherapy-induced
4

Similar Publications

The euglenatides are a family of hybrid polyketide-nonribosomal peptides produced by the unicellular algae Euglena gracilis. These compounds have antiproliferative activity against fungal pathogens and mammalian cancer cell lines. Analysis of E.

View Article and Find Full Text PDF

Effect of ultrafine CO2 bubbles on Euglena gracilis Z growth with CO2 gas bubble size and chlorophyll content.

Biosci Biotechnol Biochem

December 2024

Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Central Ward, Hamamatsu, Shizuoka, Japan.

Microalgae have been explored as a viable alternative food source. Among them, Euglena gracilis stands out as a promising single-cell algae. However, the challenge lies in developing more efficient and cost-effective methods for industrial mass production of Euglena gracilis under controlled culture conditions.

View Article and Find Full Text PDF

Exposure pathways (diet, dissolved or particulate substrate) of rare earth elements to aquatic organisms.

Ecotoxicol Environ Saf

December 2024

School of the Environment, Trent University, Peterborough, Canada; Environmental and Life Science graduate program, Trent University, Peterborough, Canada; Department of Chemistry, Trent University, Peterborough, Canada.

The global extraction and use of rare earth elements (REEs) continue to rise as they are implemented in technologies that improve human and environmental livelihoods. However, the general understanding of transfer processes and fates of REEs in aquatic systems remains limited. Here, we aim to determine the REEs' main exposure pathways, e.

View Article and Find Full Text PDF

Euglena gracilis polysaccharide modulated gut dysbiosis of obese individuals via acetic acid in an in vitro fermentation model.

Food Res Int

January 2025

School of Life Sciences, Yantai University, Yantai, China; Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China. Electronic address:

Gut dysbiosis is a characteristic feature of obesity and targeting gut microbiota presents a promising approach to attenuate obesity. Euglena gracilis polysaccharide (EGP) has emerged as a potential prebiotic capable of promoting health-beneficial bacteria. However, its effects on the gut dysbiosis of obese individuals remain unclear.

View Article and Find Full Text PDF

Herein, we extracted proteins from four microalgae: Chlamydomonas reinhardtii (CHR), Euglena gracilis (EUG), Spirulina platensis (SPP), and Spirulina maxima (SPM). Subsequently, their physicochemical and functional properties, as well as air-water interface adsorption behavior were investigated. Results demonstrated that the solubility and emulsifying properties of these proteins were significantly affected by pH, with minimum values observed near their isoelectric point (3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!