Phytic acid and graphene oxide functionalized sponge with special-wettability and electronegativity for oil-in-water emulsion separation in single-step.

J Hazard Mater

Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China.

Published: August 2022

Developing an emulsion separation material with one-step in-situ purifying capability and improved security in applications, especially for subsequent scale-up, is valuable but remains a challenge. Herein, the amphiphilic sponge (PA@RGO@MS) was prepared via impregnation and in-situ growth of the negatively charged hydrophilic phytic acid (PA) and the hydrophobic reduced graphene oxide (RGO) on the surface of the melamine sponge (MS) and applied in emulsion purification. The mechanics, wettability, absorption performance of the PA@RGO@MS were analyzed to identify its potential for stable demulsification. Results show that the PA@RGO@MS could purify emulsions (turbidity removal rate = 99.7%; TOC removal rate = 94.14%) in-situ in one step by simple shock absorption, profited from the hydrophilic and demulsification capability of PA, oil absorption of RGO, and wide reaction and storage space of MS. Targeting the emulsion with distinct properties (density, viscosity, and concentration) of the oil phase, the PA@RGO@MS could efficiently enable the purification. Meanwhile, the powerful flame-retardant granted from PA ensures the safe shipment and storage of sponges. The favorable cyclability (turbidity removal rate > 98.5% and TOC removal rate > 89.5% after 10 cycles) and diversified operating modes enhance the practical value of the PA@RGO@MS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.129003DOI Listing

Publication Analysis

Top Keywords

removal rate
16
phytic acid
8
graphene oxide
8
emulsion separation
8
turbidity removal
8
toc removal
8
pa@rgo@ms
5
acid graphene
4
oxide functionalized
4
functionalized sponge
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!