Neuroinflammation contributes to neuronal degeneration in Parkinson's disease (PD). However, how brain inflammatory factors mediate the progression of neurodegeneration is still poorly understood. Experimental models of PD have shed light on the understanding of this phenomenon, but the exploration of inflammation-driven models is necessary to better characterize this aspect of the disorder. The use of lipopolysaccharide (LPS) to induce a neuroinflammation-mediated neuronal loss is useful to induce reliable elimination of dopaminergic neurons. Nevertheless, how this model parallels the PD-like neuroinflammation is uncertain. In the present work, we used the direct LPS injection as a model inductor to eliminate dopaminergic neurons of the substantia nigra pars compacta (SNpc) in rats and reevaluated the inflammatory reaction. High-resolution 3D histological examination revealed that, although LPS induced a reliable elimination of SNpc dopaminergic neurons, it also generated a massive inflammatory response. This inflammation-mediated injury was characterized by corralling, a damaged parenchyma occupied by a vast population of lesion-associated microglia and macrophages (LAMMs) undertaking wound compaction and scar formation, surrounded by highly reactive astrocytes. LAMMs tiled the entire lesion and engaged in long-standing phagocytic activity to resolve the injury. Additionally, modeling LPS inflammation in a cell culture system helped to understand the role of phagocytosis and cytotoxicity in the initial phases of dopaminergic degeneration and indicated that LAMM-mediated toxicity and phagocytosis coexist during LPS-mediated dopaminergic elimination. However, this type of severe inflammatory-mediated injury, and subsequent resolution appear to be different from the ageing-related PD scenario where the architectural structure of the parenchyma is mostly preserved. Thus, the necessity to explore new experimental models to properly mimic the inflammatory compound observed in PD degeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2022.577874DOI Listing

Publication Analysis

Top Keywords

dopaminergic neurons
12
lesion-associated microglia
8
microglia macrophages
8
experimental models
8
reliable elimination
8
dopaminergic
6
macrophages mediate
4
mediate corralling
4
corralling react
4
react massive
4

Similar Publications

Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.

View Article and Find Full Text PDF

Postpartum depression (PPD) affects up to 20% of new mothers and has adverse consequences for the well-being of both mother and child. Exposure to stress during pregnancy as well as dysregulation in the mesolimbic dopamine (DA) reward system and its upstream modulator oxytocin (OT) have been independently linked to PPD. However, no studies have directly examined DA or OT signaling in the postpartum brain after gestational stress.

View Article and Find Full Text PDF

The dysfunction of dopaminergic (DA) neurons is central to Parkinson's disease. Distinct synaptic vesicle (SV) populations, differing in neurotransmitter content (dopamine vs. glutamate), may vary due to differences in trafficking and exocytosis.

View Article and Find Full Text PDF

Deficiency of histamine H receptors in parvalbumin-positive neurons leads to hyperactivity, impulsivity, and impaired attention.

Neuron

January 2025

Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:

Attention deficit hyperactivity disorder (ADHD), affecting 4% of the population, is characterized by inattention, hyperactivity, and impulsivity; however, its neurophysiological mechanisms remain unclear. Here, we discovered that deficiency of histamine H receptor (HR) in parvalbumin-positive neurons in substantia nigra pars recticulata (PV) attenuates PV neuronal activity and induces hyperactivity, impulsivity, and inattention in mice. Moreover, decreased HR expression was observed in PV in patients with ADHD symptoms and dopamine-transporter-deficient mice, whose behavioral phenotypes were alleviated by HR agonist treatment.

View Article and Find Full Text PDF

Sexually dimorphic dopaminergic circuits determine sex preference.

Science

January 2025

Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.

Sociosexual preference is critical for reproduction and survival. However, neural mechanisms encoding social decisions on sex preference remain unclear. In this study, we show that both male and female mice exhibit female preference but shift to male preference when facing survival threats; their preference is mediated by the dimorphic changes in the excitability of ventral tegmental area dopaminergic (VTA) neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!