Mitochondrial activity adapts to cellular energetic and metabolic demands; its dysfunction is a hallmark of ageing and many human diseases. The evolutionarily conserved translation elongation factor eIF5A is involved in maintaining mitochondrial function. In humans, eIF5A is encoded by two highly homologous but differentially expressed genes; in yeast, these are TIF51A and TIF51B. We show that yeast transcription factor Hap1 constitutively binds to the TIF51A promoter to activate its expression under respiration, but represses its expression under nonrespiration conditions by recruiting the corepressor Tup1. Hap1 indirectly regulates TIF51B expression by binding to and activating the TIF51B repressor genes ROX1 and MOT3 under respiration and repressing them under nonrespiration. Thus, the levels of eIF5A isoforms are adapted to the mitochondrial functional status.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.14366DOI Listing

Publication Analysis

Top Keywords

mitochondrial functional
8
functional status
8
activator/repressor hap1
4
hap1 binds
4
binds yeast
4
yeast eif5a-encoding
4
eif5a-encoding gene
4
gene tif51a
4
tif51a adapt
4
expression
4

Similar Publications

Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.

View Article and Find Full Text PDF

A high-calorie diet and lack of exercise are the most important risk factors contributing to metabolic dysfunction-associated steatotic liver disease (MASLD) initiation and progression. The precise molecular mechanisms of mitochondrial function alteration during MASLD development remain to be fully elucidated. In this study, a total of 60 male C57BL/6J mice were maintained on a normal or amylin liver NASH (AMLN) diet for 6 or 10 weeks.

View Article and Find Full Text PDF

Recent advancements in the understanding of the alterations in mitochondrial biogenesis in Alzheimer's disease.

Mol Biol Rep

January 2025

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.

Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD.

View Article and Find Full Text PDF

Mitochondrial dysfunction-driven AMPK-p53 axis activation underpins the anti-hepatocellular carcinoma effects of sulfane sulfur.

Sci Rep

January 2025

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability.

View Article and Find Full Text PDF

Ferroptosis is a form of iron-dependent programmed cell death, which is distinct from apoptosis, necrosis, and autophagy. Mitochondria play a critical role in initiating and amplifying ferroptosis in cancer cells. Voltage-Dependent Anion Channel 1 (VDAC1) embedded in the mitochondrial outer membrane, exerts roles in regulation of ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!