Layer-specific fiber distribution in arterial tissue modeled as a constrained mixture.

Int J Numer Method Biomed Eng

Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium.

Published: April 2023

Collagen fibers and their orientation greatly influence an artery's mechanical characteristics, determining its transversely isotropic behavior. It is generally assumed that these fibers are deposited along a preferred direction to maximize the load bearing capacity of the vessel wall. This implies a large spatial variation in collagen orientation which can be reconstructed in numerical models using so-called reorientation algorithms. Until now, these algorithms have used the classical continuum mechanics modeling framework which requires knowledge of tissue-level parameters and the artery's stress-free reference state, which is inaccessible in a clinical context. We present an algorithm to compute the preferred fiber distribution compatible with the constrained mixture theory, which orients two collagen fiber families according to the loading experienced by the isotropic non-collagenous extracellular matrix, without requiring prior knowledge of the stress-free state. Because consensus is lacking whether stress or stretch is the determining factor behind the preferred fiber distribution, we implemented both approaches and compared the results with experimental microstructural data of an abdominal aorta. The stress-based algorithm was able to describe several experimentally observed transitions of the fiber distribution across the intima, media and adventitia.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.3608DOI Listing

Publication Analysis

Top Keywords

fiber distribution
16
constrained mixture
8
preferred fiber
8
layer-specific fiber
4
distribution
4
distribution arterial
4
arterial tissue
4
tissue modeled
4
modeled constrained
4
mixture collagen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!