We present the design, implementation, and illustrative results of a light collection/injection strategy based on an off-axis parabolic mirror collector for a low-temperature Scanning Tunneling Microscope (STM). This device allows us to perform STM induced Light Emission (STM-LE) and Cathodoluminescence (STM-CL) experiments and in situ Photoluminescence (PL) and Raman spectroscopy as complementary techniques. Considering the Étendue conservation and using an off-axis parabolic mirror, it is possible to design a light collection and injection system that displays 72% of collection efficiency (considering the hemisphere above the sample surface) while maintaining high spectral resolution and minimizing signal loss. The performance of the STM is tested by atomically resolved images and scanning tunneling spectroscopy results on standard sample surfaces. The capabilities of our system are demonstrated by performing STM-LE on metallic surfaces and two-dimensional semiconducting samples, observing both plasmonic and excitonic emissions. In addition, we carried out in situ PL measurements on semiconducting monolayers and quantum dots and in situ Raman on graphite and hexagonal boron nitride (h-BN) samples. Additionally, STM-CL and PL were obtained on monolayer h-BN gathering luminescence spectra that are typically associated with intragap states related to carbon defects. The results show that the flexible and efficient light injection and collection device based on an off-axis parabolic mirror is a powerful tool to study several types of nanostructures with multiple spectroscopic techniques in correlation with their morphology at the atomic scale and electronic structure.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0078423DOI Listing

Publication Analysis

Top Keywords

off-axis parabolic
16
parabolic mirror
16
based off-axis
12
scanning tunneling
12
design implementation
8
device based
8
tunneling microscope
8
implementation device
4
off-axis
4
parabolic
4

Similar Publications

A wavefront correction method is proposed for high-precision optic surfacing, addressing the discrepancy between wavefront and real surface errors in Fizeau interferometer testing. We believe this to be a proposed novel method that encompasses optical surface function parameters fitting, lateral distortion correction, misalignment error removal, and sag surface error calculation. The method's error has been thoroughly analyzed, including aspects of function parameters fitting, ray tracing, and interpolation.

View Article and Find Full Text PDF

High-field THz sources with peak field strengths exceeding MV/cm are essential for nonlinear THz spectroscopy and coherent control of matter on ultrafast time scales. Two-color femtosecond laser plasma sources employing long filamentation have been reported as providing single-cycle, >MV/cm fields, with multi-decade spanning bandwidth and polarization control, making them promising sources for such experiments. In this work, we report the observation of spatiotemporal spreading of the THz pulse when standard off-axis parabolic mirrors are used for collection and focusing of long filament plasma-based THz pulses.

View Article and Find Full Text PDF

Table-top laser-based terahertz high harmonic generation spectroscopy under magnetic fields and low temperatures.

Rev Sci Instrum

October 2024

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

We have developed a terahertz (THz) nonlinear spectrometer at low temperatures (1.5-300 K) and under high magnetic fields (up to 10 T) by combining the laser-driven table-top intense THz source with a superconducting magnet. The strong-field THz pump pulse was generated from LiNbO3 crystal using the tilted-pulse-front technique and tightly focused into the center of the magnet by an off-axis parabolic mirror and a THz lens.

View Article and Find Full Text PDF

By introducing anisotropy into nonlinear propagations, off-axis vortex beams exhibit significantly different characteristics compared to the isotropic case. The orbital angular momentum (OAM) is non-conservative and can periodically change between positive and negative values. Accordingly, the rotation of phase singularity can transit between clockwise and counterclockwise directions.

View Article and Find Full Text PDF

Hyperspectral imaging (HSI) technologies have enabled a range of experimental techniques and studies in the fluorescence microscopy field. Unfortunately, a drawback of many HSI microscope platforms is increased acquisition time required to collect images across many spectral bands, as well as signal loss due to the need to filter or disperse emitted fluorescence into many discrete bands. We have previously demonstrated that an alternative approach of scanning the fluorescence excitation spectrum can greatly improve system efficiency by decreasing light losses associated with emission filtering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!