Background: The purpose of this study was to evaluate the association of specific threshold values for changes in metabolic metrics measured from 1H magnetic resonance spectroscopic imaging (MRSI) to survival of patients with high-grade glioma treated with multimodality therapy.

Patients And Methods: Forty-four patients with newly diagnosed high-grade glioma were prospectively enrolled. Serial MRI and MRSI scans provided measures of tumor choline, creatine, and N-acetylaspartate (NAA). Cox regression analyses adjusted for patient age, KPS, and delivery of concurrent chemotherapy were used to assess the association of changes in metabolic metrics with survival.

Results: Median follow-up time for patients at risk was 13.4 years. Overall survival (OS) was longer in patients with ≤20% increase (vs. >20%) in normalized choline (p=0.024) or choline/NAA (p=0.024) from baseline to week 4 of RT. During this period, progression-free survival (PFS) was longer in patients with ≤40% increase (vs. >40%) in normalized choline (p=0.013). Changes in normalized creatine, choline/creatine, and NAA/creatine from baseline to mid-RT were not associated with OS. From baseline to post-RT, changes in metabolic metrics were not associated with OS or PFS.

Conclusion: Threshold values for serial changes in choline metrics on mid-RT MRSI associated with OS and PFS were identified. Metabolic metrics at post-RT did not predict for these survival endpoints. These findings suggest a potential clinical role for MRSI to provide an early assessment of treatment response and could enable risk-adapted therapy in clinical trial development and clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.15744DOI Listing

Publication Analysis

Top Keywords

metabolic metrics
16
high-grade glioma
12
changes metabolic
12
survival patients
8
patients newly
8
newly diagnosed
8
diagnosed high-grade
8
threshold values
8
longer patients
8
normalized choline
8

Similar Publications

Purpose: Recent advancements in imaging, particularly 18F-fluorodeoxyglucose positron-emission tomography-computed tomography (FDG-PET/CT), have improved the detection of involved lymph nodes, thus influencing staging accuracy and potentially treatment outcomes. This study is a post hoc analysis of the GAZAI trial data to evaluate the impact of FDG-PET/CT versus computed tomography (CT) alone on radiation target volumes for involved-site radiotherapy (IS-RT) in early-stage follicular lymphoma (FL).

Methods: All patients in the GAZAI trial underwent pretherapeutic FDG-PET/CT examinations, which were subject to central quality control.

View Article and Find Full Text PDF

This study aimed to conduct a bibliometric analysis of the 100 most cited articles on experimental cardiac arrest models in rats, identifying key contributors, publication trends, research themes, and collaboration networks. A comprehensive literature search was performed on the Web of Science (WoS) database on June 11, 2024, using keywords related to cardiac arrest and rat models. The top 100 most cited articles were analyzed using the Biblioshiny web application from the Bibliometrix R package (version 4.

View Article and Find Full Text PDF

Objective: The objective of this research is to enhance pneumonia detection in chest X-rays by leveraging a novel hybrid deep learning model that combines Convolutional Neural Networks (CNNs) with modified Swin Transformer blocks. This study aims to significantly improve diagnostic accuracy, reduce misclassifications, and provide a robust, deployable solution for underdeveloped regions where access to conventional diagnostics and treatment is limited.

Methods: The study developed a hybrid model architecture integrating CNNs with modified Swin Transformer blocks to work seamlessly within the same model.

View Article and Find Full Text PDF

Peptides are widely used in biomaterials due to their ease of synthesis, ability to signal cells, and modify the properties of biomaterials. A key benefit of using peptides is that they are natural substrates for cell-secreted enzymes, which creates the possibility of utilizing cell-secreted enzymes for tuning cell-material interactions. However, these enzymes can also induce unwanted degradation of bioactive peptides in biomaterials, or in peptide therapies.

View Article and Find Full Text PDF

Herein, a novel spectrofluorometric sensor is proposed for the sensitive analysis of two nonfluorescent mucolytic drugs, namely, acetylcysteine (ACT) and carbocisteine (CST), utilizing the newly synthesized 2-[(2-hydroxyethyl)-(2,8,10-trimethylpyrido[2',3':3,4]pyrazolo[1,5-a]pyrimidin-4-yl)-amino]-ethanol as a fluorescence probe (Flu. Probe). This fluorophore exhibits fluorescence emission at 445 nm upon excitation at 275 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!