Currently, up to 35% off all drugs approved for the treatment of human diseases belong to the G-protein-coupled receptor (GPCR) family. Out of the almost 800 existing GPCRs, 25% have no known endogenous ligands and are regarded as orphan receptors; many of these are currently under investigation as potential pharmacological targets. Here, we hypothesised that orphan GPCRs expressed in the hypothalamus could be targets for the treatment of obesity and other metabolic diseases. Using bioinformatic tools, we identified 78 class A orphan GPCRs that are expressed in the hypothalamus of mice. Initially, we selected two candidates and determined their responsivities to nutritional interventions: GPR162, the GPCR with highest expression in the hypothalamus, and GPR68, a GPCR with intermediate expression in the hypothalamus and that has never been explored for its potential involvement in metabolic regulation. GPR162 expression was not modified by fasting/feeding or by the consumption of a high-fat diet, and was therefore not subsequently evaluated. Conversely, GPR68 expression increased in response to the consumption of a high-fat diet and reduced under fasting conditions. Using immunofluorescence, GPR68 was identified in both proopiomelanocortin-expressing and agouti-related peptide-expressing neurons in the hypothalamic arcuate nucleus. Acute inhibition of GPR68 with an allosteric modulator promoted an increase in the expression of the orexigenic agouti-related peptide and neuropeptide Y, whereas 4- and 12-h inhibition of GPR68 resulted in increased caloric intake. Thus, GPR68 has emerged as an orphan GPCR that is expressed in the hypothalamus and is involved in the regulation of feeding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2022.136660DOI Listing

Publication Analysis

Top Keywords

expressed hypothalamus
16
hypothalamus involved
8
involved regulation
8
regulation feeding
8
orphan gpcrs
8
gpcrs expressed
8
expression hypothalamus
8
consumption high-fat
8
high-fat diet
8
inhibition gpr68
8

Similar Publications

To understand the action mechanism of probiotics against postmenopausal symptoms, we examined the effects of Lactococcus lactis P32 (P) and Bifidobacterium bifidum P45 (P), which suppressed interleukin (IL)-6 and receptor activator of nuclear factor-κB (RANK) ligand (RNAKL) expression in Gardnerella vaginalis (Gv)-stimulated macrophages, on vaginitis, osteoporosis, and depression/cognitive impairment (DC) in mice with vaginally infected Gv, ovariectomy (Ov), or Ov/Gv (oG). Oral administration of P or P decreased Gv-induced DC-like behavior and tumor necrosis factor (TNF)-α, IL-6, RANK, and/or RANKL expression in the vagina, bone, hypothalamus, hippocampus, and colon, while Gv-suppressed bone osteoprotegerin and brain serotonin and brain-derived neurotrophic factor (BDNF) levels increased. They partially shifted vaginal and gut dysbiosis in Gv-infected mice to the gut microbiota composition in normal control mice.

View Article and Find Full Text PDF

Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction.

Endocrinology

November 2024

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina.

The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • The pathogenesis of long COVID (LC) involves uncertainty, complicating the search for effective therapies.
  • The hypothesis suggests that chronic damage to the body's anti-inflammatory mechanisms, particularly through the vagus nerve, HPA axis, and mitochondrial function, plays a crucial role in LC development.
  • The theory posits that SARS-CoV-2 alters these systems at various levels, leading to persistent inflammation due to impaired anti-inflammatory responses from acetylcholine and cortisol, warranting further investigation into glucocorticoid receptor sensitivity and potential long-term epigenetic effects.
View Article and Find Full Text PDF

Unique infrared thermographic profiles and altered hypothalamic neurochemistry associated with mortality in endotoxic shock.

Exp Neurol

December 2024

Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, United States of America. Electronic address:

Neonatal sepsis results in significant morbidity and mortality, but early detection is clinically challenging. In a neonatal rat model of endotoxic shock, we identified unique infrared thermographic (IRT) profiles in skin temperature that could identify risk of later mortality. Ten-day old rats were placed in a thermally stable isolette and IRT images of cranial (T), scapula (T) and rump (T) skin temperature were obtained continuously for 8 h following an intraperitoneal injection of LPS (or saline).

View Article and Find Full Text PDF

Role of PCBP2 in regulating nanovesicles loaded with curcumin to mitigate neuroferroptosis in neural damage caused by heat stroke.

J Nanobiotechnology

December 2024

Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.

Objective: This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2).

Methods: Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!