Synthesis and characterization of photo-crosslinkable cinnamate-functionalized pectin.

Int J Biol Macromol

Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia; Department of Polymers and Pigments, National Research Centre, Cairo 12311, Egypt.

Published: June 2022

The polysaccharide pectin (PC) was functionalized with the photo-responsive cinnamic acid hydrazide (CN) to produce the photo-crosslinkable PC-CN hydrogel material that was then evaluated as a carrier for encapsulation of the drug model aspirin. Cinnamic acid hydrazide was first prepared and then incorporated with the abundant -COOCH groups on the pectin chain via hydrazide linkage. The obtained polymeric derivatives have been characterized by means of instrumental techniques including FTIR and NMR. The obtained PC-CN hydrogels with different cinnamic functionality were also freeze-dried and examined by SEM, which indicated more coherent hydrogel texture by increasing the cinnamic functionalization. The effect of the photo-curing time, as well as the functionalization degree, on the swelling and gelation of the obtained hydrogel was also studied to evaluate the potential of the developed material in drug delivery systems using aspirin as a common and available drug model. The developed PC-CN hydrogel materials exhibited high potential as a drug carrier that enables the control of the drug release via optimizing both the degree of cinnamic functionality and the photo-curing time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.04.109DOI Listing

Publication Analysis

Top Keywords

cinnamic acid
8
acid hydrazide
8
pc-cn hydrogel
8
drug model
8
cinnamic functionality
8
photo-curing time
8
cinnamic
5
drug
5
synthesis characterization
4
characterization photo-crosslinkable
4

Similar Publications

Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton-driven symporter, the import of glucose is mediated by an ABC-type transporter, and hence both require energy.

View Article and Find Full Text PDF

New cinnamic acid sugar esters as potential UVB filters: Synthesis, cytotoxicity, and physicochemical properties.

Carbohydr Res

January 2025

Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Campus Scientifico E. Mattei, via Ca' Le Suore 2, 61029, Urbino, PU, Italy. Electronic address:

Cinnamic Acid Sugar Ester Derivatives (CASEDs) are a class of natural compounds that exhibit several interesting biological activities. However, to date, no examples of their use in sunscreen formulations have been reported. Here, we describe the synthesis of a series of novel cinnamic acid esters of glucose (4a-g), ribose (4h) and lactose (4i) starting from the respective acetals 3.

View Article and Find Full Text PDF

Isoferulic acid (IA), a derivative of cinnamic acid, is derived from Danshen and exhibits anticancer properties by disrupting cancer cell activities. However, its role in pancreatic cancer, the "king of cancer", was unknown. In this study, pancreatic cancer cells were subjected to treatment with IA (6.

View Article and Find Full Text PDF

Colistin-resistant (COLR-Ab) is an opportunistic pathogen commonly associated with nosocomial infections, and it is difficult to treat with current antibiotics. Therefore, new antimicrobial agents need to be developed for treatment. Based on this information, we investigated the antimicrobial, antibiofilm, and combination activities of -coumaric acid (-CA), ferulic acid (FA), and -methoxycinnamic acid (-MCA) against five COLR-Ab isolates.

View Article and Find Full Text PDF

Cinnamic acid alleviates endothelial dysfunction and oxidative stress by targeting PPARδ in obesity and diabetes.

Chin Med

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.

Objective: Cinnamic acid (CA) is a bioactive compound isolated from cinnamon. It has been demonstrated to ameliorate inflammation and metabolic diseases, which are associated with endothelial dysfunction. This study was aimed to study the potential protective effects of CA against diabetes-associated endothelial dysfunction and its underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!