Global compilations and regional studies, indicative of the unsustainable extraction and subsequent unremittingly depleting groundwater (GW) in India, either provide bulk estimates or are confined to the river basins and therefore conceal inferences from a nationwide policymaking perspective. Here, we provide the state-wise past (2000-2020) and future (2030-2050) assessment of dwindling groundwater in India utilizing in-situ groundwater levels (GWL) from 54,112 wells, remote sensing products, and hydrological simulations. By employing three machine learning methods, we show a decline in GWL of over 80% in North India with a notable shift towards the eastern state of Uttar Pradesh and a cumulative groundwater loss (169.96 ± 19.67 km) equivalent to the water storage capacity of the world's biggest dam (Kariba Dam, Zimbabwe). Its likely contribution to sea-level rise (0.47 ± 0.06 mm) is about 64% of that from annual global glacier melt. Our results typically contrast the GW recovery paradox in South India (e.g., a declining trend of -84.48 ± 38.81 mm/a (p < 0.05) in Andhra Pradesh during 2000-2020), reveal high seasonal variability (e.g., up to ~6 m in Maharashtra), and illustrate the skewed effect of survivor bias in the traditional assessments. We infer the significant impact of underlying hydrogeology and the implementation of water-related policies and projects on the GWL dynamic and variability in the region. Projected GWL reveals a likely water scarcity situation for about 2.8 million km area and one billion residents of the country up to 2050. Our observation-based analysis offers insights into the state-level monthly GW dynamics, which is critical for efficient interstate resource allocation, development plans, and policy interventions with broad methodological implications for the water-scarce countries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155474 | DOI Listing |
Environ Toxicol
January 2025
Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.
The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
To prevent water scarcity, wastewater must be discharged to the surface or groundwater after being treated. Another method is to reuse wastewater in some areas after treatment and evaluate it as much as possible. In this study, it is aimed to recover and reuse the caustic (sodium hydroxide, NaOH) used in the recycling of plastic bottles from polyethylene terephthalate (PET) washing wastewater.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India. Electronic address:
The Gangetic Plain, one of the world's most fertile regions, is vital to food and water security in densely populated areas. However, metal contamination in sediments and water poses significant challenges, owing to intensified industrial and agricultural activities and periodic flooding. The ecological risks imposed by metals in the Middle Gangetic Plain remain underexplored because of limited data on their bioavailability across varying sediment depths.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
AS3MT, GSTO2, and GSTP1 genes play important roles in the arsenic biotransformation pathway, while CYP2E1 gene has a prominent role in the metabolic activation of xenobiotics. Hence, polymorphisms of these genes might have an effect on arsenic biotransformation and could impact susceptibility to arsenical skin lesions in individuals of chronic arsenic toxicity. The present case-control study, comprising 148 subjects, attempted to evaluate genetic association between nine polymorphisms of AS3MT, GSTO2, GSTP1 and CYP2E1 genes and arsenical skin lesions in a West Bengal (WB) population.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Geology, Aligarh Muslim University, Aligarh, India.
Evolution of groundwater genesis in Central Ganga Plain (CGP) is scrutinized with due consideration of hydrochemical and hydrodynamic environment within Quaternary alluviums. Wide variation in hydrochemical facies in CGP indicates a dynamic hydro-geochemical environment influenced from the seasonal rainfall, return flows, canal seepages, and anthropogenic activities. The Ca-HCO facies retaining meteoric nature is characterized by shallow water levels, high recharge rate, high hydraulic conductivity, low salinity and trace elemental load.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!