Washing with organic acids and dissolved organic carbon (DOC) is a promising technique for effective removal of potentially toxic metals from agricultural soils and the two key factors are the screening of inexpensive, high-efficiency, and environmentally friendly washing agents and the safe treatment of waste eluent. We used extracts from agro-forestry wastes (pineapple peel, lemon peel, grapefruit peel and gardening crabapple fruit) to develop a facile two-stage sequential washing method (extracts and/or citric acid (CA) and coupled with extracts) and regenerated waste eluent. The washing efficiencies of Cd and Cu were significantly increased by pineapple peel (PP) using two-stage sequential washing with the sequence of PP + CA-PP > CA-PP > PP-PP. The potential pollution risk from soil Cd was lowered by 33.0% from moderate to low risk, and soil nutrient contents increased. 80.9% of Cd and 81.3% of Cu in waste eluent were efficiently removed by the PP residues. The removal mechanisms of metals in soils and eluents by PP washing agents and residues can be attributed to acid activation, cation exchange and complexation between metal ions and carboxyl groups. Therefore, the PP extracts and residues are potentially suitable for the removal of Cd and Cu from polluted agricultural soils and washing waste eluents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155548 | DOI Listing |
Int J Food Microbiol
January 2025
Anses, Nancy Laboratory for Rabies and Wildlife, Malzéville, France.
Cystic and alveolar echinococcosis are severe zoonotic diseases characterized by long asymptomatic periods lasting months or years. Viable Echinococcus spp. eggs released into the environment through the feces of canids can infect humans through accidental ingestion via hand-to-mouth contact or consumption of contaminated food or water.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden.
Multiomics analysis of single tissue sections using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) provides comprehensive molecular insights. However, optimizing tissue sample preparation for MALDI-MSI to achieve high sensitivity and reproducibility for various biomolecules, such as lipids, -glycans, and tryptic peptides, presents a significant challenge. This study introduces a robust and reproducible protocol for the comprehensive sequential analysis of the latter molecules using MALDI-MSI in fresh-frozen rodent brain tissue samples.
View Article and Find Full Text PDFACS Omega
December 2024
Institute of Physics, University of Greifswald, Felix-Hausdorff-Straße 6, D-17489 Greifswald, Germany.
Electrically conductive films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) are usually formed by spin coating of aqueous dispersions with PEDOT:PSS nanoparticles. To better understand the film formation, the adsorption conditions are investigated using dip coating and a flow cell with different flow rates. Multilayer films are formed by sequential adsorption of oppositely charged macromolecules or nanoparticles.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Naval Medical Research Unit San Antonio, JBSA FT Sam Houston, TX, 78234, United States of America.
Fracture-related infections are burdensome conditions that affect both a patient's health and financial well-being. Preventing an infection and stabilizing the fracture are critical aspects in a care plan that rely on antibiotics and orthopedic implants, both which need to be improved. Bacteriophage or phage are viruses that specifically kill bacteria and are a promising alternative/companion to antibiotics while enhanced orthopedic implants that are osteoinductive and biodegradable are needed for bone healing.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom.
This study evaluated the contribution of soil dust deposited on the surface of reed canary grass (Phalaris arundinacea) grown on historic lead (Pb) mine sites to the overall contamination of the biomass, with implications for phytoremediation, valorization and utilization. By applying a novel combination of imaging of plant material using X-ray computed tomography (XCT) and scanning electron microscopy (SEM), with washing experiments and bulk analysis, the research aimed to distinguish between (a) Pb uptake through biological processes (phyto-extraction), and (b) surficial dust and physical entrapment of Pb-rich dust on plants cultivated in contaminated soils (surface-contamination). The study established the presence and distribution of Pb-rich particles, which were difficult to remove even by means of sequential washing in 1 M hydrochloric acid and surfactant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!