Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objectives: The Epiretinal Membrane (ERM) is an ocular disease that can cause visual distortions and irreversible vision loss. Patient sight preservation relies on an early diagnosis and on determining the location of the ERM in order to be treated and potentially removed. In this context, the visual inspection of the images in order to screen for ERM signs is a costly and subjective process.
Methods: In this work, we propose and study three end-to-end fully-automatic approaches for the simultaneous segmentation and screening of ERM signs in Optical Coherence Tomography images. These convolutional approaches exploit a multi-task learning context to leverage inter-task complementarity in order to guide the training process. The proposed architectures are combined with three different state of the art encoder architectures of reference in order to provide an exhaustive study of the suitability of each of the approaches for these tasks. Furthermore, these architectures work in an end-to-end manner, entailing a significant simplification of the development process since they are able to be trained directly from annotated images without the need for a series of purpose-specific steps.
Results: In terms of segmentation, the proposed models obtained a precision of 0.760 ± 0.050, a sensitivity of 0.768 ± 0.210 and a specificity of 0.945 ± 0.011. For the screening task, these models achieved a precision of 0.963 ± 0.068, a sensitivity of 0.816 ± 0.162 and a specificity of 0.983 ± 0.068. The obtained results show that these multi-task approaches are able to perform competitively with or even outperform single-task methods tailored for either the segmentation or the screening of the ERM.
Conclusions: These results highlight the advantages of using complementary knowledge related to the segmentation and screening tasks in the diagnosis of this relevant pathology, constituting the first proposal to address the diagnosis of the ERM from a multi-task perspective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2022.102068 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!