A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A tri-modal tissue-equivalent anthropomorphic phantom for PET, CT and multi-parametric MRI radiomics. | LitMetric

A tri-modal tissue-equivalent anthropomorphic phantom for PET, CT and multi-parametric MRI radiomics.

Phys Med

Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, Italy; Department of Physics "G. Occhialini", University of Milano - Bicocca, Italy. Electronic address:

Published: June 2022

Purpose: Radiomics has emerged as an advanced image processing methodology to define quantitative imaging biomarkers for prognosis and prediction of treatment response and outcome. The development of quantitative imaging biomarkers requires careful analysis to define their accuracy, stability and reproducibility through phantom measurements. Few efforts were devoted to develop realistic anthropomorphic phantoms. In this work, we developed a multimodality image phantom suitable for PET, CT and multiparametric MRI imaging.

Methods: A tissue-equivalent gel-based mixture was designed and tested for compatibility with different imaging modalities. Calibration measurements allowed to assess gel composition to simulate PET, CT and MRI contrasts of oncological lesions. The characterized gel mixture was used to create realistic synthetic lesions (e.g. lesions with irregular shape and non-uniform image contrast), to be inserted in a standard anthropomorphic phantom. In order to show phantom usefulness, issues related to accuracy, stability and reproducibility of radiomic biomarkers were addressed as proofs-of-concept.

Results: The procedure for gel preparation was straightforward and the characterized gel mixture allowed to mime simultaneously oncological lesion contrast in CT, PET and MRI imaging. Proofs-of-concept studies suggested that phantom measurements can be customized for specific clinical situations and radiomic protocols.

Conclusions: We developed a strategy to manufacture an anthropomorphic, tissue-equivalent, multimodal phantom to be customized on specific radiomics protocols, for addressing specific methodological issues both in mono and multicentric studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2022.04.007DOI Listing

Publication Analysis

Top Keywords

anthropomorphic phantom
8
quantitative imaging
8
imaging biomarkers
8
accuracy stability
8
stability reproducibility
8
phantom measurements
8
pet mri
8
characterized gel
8
gel mixture
8
customized specific
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!