Background And Objective: Chronic obstructive pulmonary disease (COPD) is a chronic airway disease with airflow limitation and abnormal inflammatory response. It has been verified that SOX9 plays a key role in lung function of various lung diseases and SOX9 is closely associated with COPD. Additionally, literature has reported that STIM1 is involved in lung injury and is highly expressed in neutrophils from COPD patients. This study aimed to characterize the biological roles of SOX9 and STIM1 in the pathogenesis of COPD and to elucidate the regulatory mechanism.

Methods: Human bronchial epithelial cells (BEAS-2B) were treated with CSE to construct in vitro COPD model. The levels of SOX9 and STIM1 in CSE-treated BEAS-2B cells were detected by western blot and RT-qPCR assay. Then, JASPAR datasets were utilized to analyze SOX9 binding sites in the promoter region of STIM1. Besides, luciferase reporter assay and ChIP assay were employed to validate the binding sites in STIM1 promoter region to SOX9. In addition, viability and apoptosis of BEAS-2B cells were assessed by utilizing MTT assay and TUNEL staining. ELISA kits and corresponding commercial kits were applied to measure the levels of TNF-α, IL-6, IL-1β, SOD, GSH-Px and MDA.

Results: CSE treatment dose- and time-dependently reduced SOX9 expression in BEAS-2B cells. SOX9 overexpression enhanced the viability and suppressed the apoptosis of CSE-treated BEAS-2B cells as well as attenuated CSE-induced inflammation and oxidative stress. Then, it was validated that SOX9 bound to the promoter region of STIM1. Moreover, SOX9 overexpression-mediated impacts on cell viability, cell apoptosis, inflammation and oxidative stress in CSE-treated BEAS-2B cells were partially abolished by upregulation of STIM1.

Conclusion: To sum up, results here suggested that overexpression of SOX9 could mitigate inflammatory injury in CSE-treated bronchial epithelial cells by suppressing STIM1.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00011-022-01576-0DOI Listing

Publication Analysis

Top Keywords

beas-2b cells
20
sox9
12
bronchial epithelial
12
epithelial cells
12
cse-treated beas-2b
12
promoter region
12
inflammatory injury
8
human bronchial
8
cells
8
cells suppressing
8

Similar Publications

Background: Fine particulate matter (PM2.5) is a global environmental problem that threatens public health because it can induce ferroptosis and cause lung injury. Hesperetin (Hes), a natural compound widely present in fruits and vegetables, can activate nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting powerful antioxidant effects.

View Article and Find Full Text PDF

Purpose: Allergic diseases have escalated to epidemic levels worldwide, impacting nearly 30% of the global population. Fungi are a significant source of allergens responsible for up to 6% of respiratory diseases in the general population. However, the specific cause of respiratory allergies often remains unidentified.

View Article and Find Full Text PDF

Background: Lung adenocarcinoma is one of the most common malignant tumors worldwide. Its complex molecular mechanisms and high tumor heterogeneity pose significant challenges for clinical treatment. The manganese ion metabolism family plays a crucial role in various biological processes, and the abnormal expression of the NUDT3 gene in multiple cancers has drawn considerable attention.

View Article and Find Full Text PDF

In this study, composite films were developed by encapsulating cassia oil (CO) with β-cyclodextrin through a microencapsulation technique and incorporating it into a chitosan (CS), polyvinyl alcohol (PVA) and glycerol matrix. The primary objective of the film was to inhibit bacterial growth on the surface of fresh bananas and extend their shelf life. Characterization methods were employed to evaluate the physical properties and functionality of the composite films.

View Article and Find Full Text PDF

Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!