Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Glioblastoma in the brain is the most malignant solid tumor with a poor prognosis. Screening critical targets and exploring underlying mechanisms will be a benefit for diagnoses and treatment. IDH1 mutation (R132) was used to distinguish glioblastoma grade and predict prognosis as a significant marker. However, the manner of IDH1 mutation regulating glioblastoma development was still unclear.
Methods: To study the function of IDH1 mutation, multi-type sequencing data (transcriptome, methylation and copy number variation) from the GEO and TCGA database were analyzed using bioinformatics techniques. The biological functions of IDH1 mutation (R132) would be comprehensively evaluated from the regulatory networks, tumor immune microenvironment and clinical relevance. Then the analysis result would be validated by experimental techniques.
Results: Compared with adjacent tissues, IDH1 was up-regulated in glioblastoma, which also positively correlated with the malignant degree and a poor prognosis. To further study the mechanism of mutated IDH1 (R132) function, 5 correlated genes (FABP5, C1RL, MIR155HG, CSTA and BCL3) were identified by different expression gene screening, enrichment analysis and network construction successively. Among them, the BCL3 was a transcription factor that may induce IDH1expression. Through calculating the correlation coefficient, it was found that in IDH1 glioblastoma, the dendritic cell infiltration was reduced which may result in a better prognosis. In addition, the level of IDH1, FABP5, C1RL, MIR155HG, CSTA and BCL3 might also influence lymphocytes infiltration (eg. CD4+ T cell) and chemokine expression (CXCL family).
Conclusions: IDH1 may participate in pathological mechanisms of glioblastoma via expression alteration or gene mutation. Furthermore, IDH1 mutation might improve prognosis via suppressing the expression of FABP5, C1RL, MIR155HG, CSTA and BCL3. Meanwhile, it was identified that BCL3 might perform similar immunomodulatory functions with IDH1 as an upstream transcript factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134951 | PMC |
http://dx.doi.org/10.18632/aging.204048 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!