Avian flight continues to inspire aircraft designers. Reducing the scale of autonomous aircraft to that of birds and large insects has resulted in new control challenges when attempting to hold steady flight in turbulent atmospheric wind. Some birds, however, are capable of remarkably stable hovering flight in the same conditions. This work describes the development of a wind tunnel configuration that facilitates the study of flapless windhovering (hanging) and soaring bird flight in wind conditions replicating those in nature. Updrafts were generated by flow over replica "hills" and turbulence was introduced through upstream grids, which had already been developed to replicate atmospheric turbulence in prior studies. Successful flight tests with windhovering nankeen kestrels (Falco cenchroides) were conducted, verifying that the facility can support soaring and wind hovering bird flight. The wind tunnel allows the flow characteristics to be carefully controlled and measured, providing great advantages over outdoor flight tests. Also, existing wind tunnels may be readily configured using this method, providing a simpler alternative to the development of dedicated bird flight wind tunnels such as tilting wind tunnels, and the large test section allows for the replication of orographic soaring. This methodology holds promise for future testing investigating the flight behaviour and control responses employed by soaring and windhovering birds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054774PMC
http://dx.doi.org/10.1038/s41598-022-10359-wDOI Listing

Publication Analysis

Top Keywords

bird flight
12
flight wind
12
wind tunnels
12
flight
9
soaring windhovering
8
windhovering birds
8
wind
8
wind tunnel
8
flight tests
8
soaring
5

Similar Publications

The pectoralis muscle in birds is important for flight and thermogenesis. In migratory songbirds this muscle exhibits seasonal flexibility in size, but whether this flexibility reflects changes in muscle fiber type has not been well documented. We investigated how seasonal changes in photoperiod affected pectoralis muscle fiber type and metabolic enzymes, comparing among three closely-related sparrow species: two seasonal migrants and one year-round, temperate climate resident.

View Article and Find Full Text PDF

Among hornbill birds, the critically endangered helmeted hornbill (Rhinoplax vigil) is notable for its casque (a bulbous beak protrusion) being filled with trabeculae and fronted by a very thick keratin layer. Casque function is debated but appears central to aerial jousting, where birds (typically males) collide casques at high speeds in a mid-flight display that is audible for more than 100 m. We characterized the structural relationship between the skull and casque anatomy using X-ray microtomography and quantitative trabecular network analysis to examine how the casque sustains extreme impact.

View Article and Find Full Text PDF

Long-distance migration, common in passerine birds, is rare and poorly studied in bats. Piloting a 1.2-gram IoT (Internet of Things) tag with onboard processing, we tracked the daily location, temperature, and activity of female common noctules () during spring migration across central Europe up to 1116 kilometers.

View Article and Find Full Text PDF

Long-distance migrants must optimise their timing of breeding to capitalise on resources at both breeding and over-wintering sites. In species with protracted breeding seasons, departing earlier on migration might be advantageous, but is constrained by the ongoing breeding attempt. Here we investigated how breeding timing affects migratory strategies in the Manx shearwater (Puffinus puffinus), a trans-hemispheric migratory seabird with large temporal variation in the onset of breeding.

View Article and Find Full Text PDF

Enantiornithes are the most successful early-diverging avian clade, their fossils revealing important information regarding the structure of Cretaceous avifaunas and the parallel refinement of flight alongside the ornithuromorph lineage that includes modern birds. The most diverse recognized family of Early Cretaceous enantiornithines is the Bohaiornithidae, known from the Jehol Biota in northeastern China. Members of this clade enhance our understanding of intraclade morphological diversity and elucidate the independent evolution of this unique lineage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!