Microscopy with extreme ultraviolet (EUV) radiation holds promise for high-resolution imaging with excellent material contrast, due to the short wavelength and numerous element-specific absorption edges available in this spectral range. At the same time, EUV radiation has significantly larger penetration depths than electrons. It thus enables a nano-scale view into complex three-dimensional structures that are important for material science, semiconductor metrology, and next-generation nano-devices. Here, we present high-resolution and material-specific microscopy at 13.5 nm wavelength. We combine a highly stable, high photon-flux, table-top EUV source with an interferometrically stabilized ptychography setup. By utilizing structured EUV illumination, we overcome the limitations of conventional EUV focusing optics and demonstrate high-resolution microscopy at a half-pitch lateral resolution of 16 nm. Moreover, we propose mixed-state orthogonal probe relaxation ptychography, enabling robust phase-contrast imaging over wide fields of view and long acquisition times. In this way, the complex transmission of an integrated circuit is precisely reconstructed, allowing for the classification of the material composition of mesoscopic semiconductor systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054792PMC
http://dx.doi.org/10.1038/s41377-022-00797-6DOI Listing

Publication Analysis

Top Keywords

extreme ultraviolet
8
euv radiation
8
euv
5
material-specific high-resolution
4
high-resolution table-top
4
table-top extreme
4
microscopy
4
ultraviolet microscopy
4
microscopy microscopy
4
microscopy extreme
4

Similar Publications

Nanoscale polarization transient gratings.

Nat Commun

December 2024

Elettra - Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149, Trieste, Italy.

Light manipulation at the nanoscale is essential both for fundamental science and modern technology. The quest to shorter lengthscales, however, requires the use of light wavelengths beyond the visible. In particular, in the extreme ultraviolet regime these manipulation capabilities are hampered by the lack of efficient optics, especially for polarization control.

View Article and Find Full Text PDF

Study on uniaxial compression mechanical properties of 3D printed columnar joint test blocks.

Sci Rep

December 2024

College of Civil Engineering and Transportation, Hohai University, Nanjing, 210098, China.

The columnar joint skeleton of 3D printed Acrylonitrile Butadiene Styrene (ABS) material, the skeleton of cement mortar and ultraviolet aging treatment are combined to pour the columnar joint rock mass (CJRM) test block. The strength, deformation, energy and failure modes of the specimens with different dip angles were analyzed by uniaxial compression test. The influence of joint skeleton on the strength of the test block was analyzed.

View Article and Find Full Text PDF

12-Spin-Qubit Arrays Fabricated on a 300 mm Semiconductor Manufacturing Line.

Nano Lett

December 2024

Intel Corporation, Technology Research Group, Hillsboro, Oregon 97124, United States.

Intel's efforts to build a practical quantum computer are focused on developing a scalable spin-qubit platform leveraging industrial high-volume semiconductor manufacturing expertise and 300 mm fabrication infrastructure. Here, we provide an overview of the design, fabrication, and demonstration of a new customized quantum test chip, which contains 12-quantum-dot spin-qubit linear arrays, code named Tunnel Falls. These devices are fabricated using immersion and extreme ultraviolet lithography (EUV), along with other standard high-volume manufacturing (HVM) processes as well as production-level process control.

View Article and Find Full Text PDF

Metal-Core-Specific Screening with Machine Learning: Accelerating the Discovery of Metal Oxide Clusters for Enhanced EUV Lithography Resolution.

J Phys Chem Lett

December 2024

Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, People's Republic of China.

Obtaining effective extreme ultraviolet lithography (EUVL) materials for pragmatic applications remains challenging. The experimental design and conventional theoretical prediction are time-consuming and costly and hardly affordable to accelerate the discovery of commercial EUVL materials. In this work, we employed the machine learning (ML) technique to predict the ionization potential of promising EUVL materials, which is closely related to the photoresists' solubility switch.

View Article and Find Full Text PDF

We report on continuous high-harmonic generation (HHG) at 1 kHz repetition rate from a liquid-sheet plasma mirror driven by relativistic-intensity near-single-cycle light transients. Through precise control of both the surface plasma density gradient and the driving light waveform, we can produce highly stable and reproducible extreme ultraviolet spectral quasi-continua, expected to correspond to the generation of stable kHz-trains of isolated attosecond pulses in the time domain. This confirms the exciting potential of liquid-sheet targets as one of the building blocks of future high-power attosecond lasers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!