AI Article Synopsis

  • ZIP proteins transport divalent metal cations in plants, but research on plant tolerance to cadmium (Cd) stress via ZIPs is limited.
  • In the study, the expression of SmZIP8 in Salix matsudana increased under Cd stress; this gene was then introduced into tobacco plants, creating transgenic varieties for comparison with wild-type.
  • Results showed that transgenic tobacco with SmZIP8 had enhanced tolerance to Cd, demonstrated by less cell damage, improved photosynthesis, and better antioxidant enzyme activity, suggesting SmZIP8 may be valuable for using plants to clean up Cd pollution.

Article Abstract

Zrt and Irt-like proteins (ZIPs) are responsible for transporting various divalent metal cations. However, information about the characteristics of the cellular and physiological tolerance of plant ZIPs to Cd stress is still limited. The expression levels of SmZIP8 in Salix matsudana Koidz were upregulated by Cd stress. The complete length of SmZIP8 from S. matsudana was cloned, and transgenic tobacco was obtained by Agrobacterium-mediated transformation. Then, the tolerance to Cd stress of wild-type (WT) and transgenic tobacco seedlings was analyzed and compared by studying the cytotoxicity of the root tip cells, photosynthetic parameters, histochemical staining of O and HO, the activities of antioxidant enzymes, and malondialdehyde content under Cd stress. In comparison with WT tobacco, the ectopic expression of SmZIP8 in tobacco promoted the cytological tolerance of the transgenic tobacco to Cd stress by reducing cell damage, raising the mitotic indexes, and reducing the rate of chromosome aberration of the root cells. Meanwhile, the results of increased photosynthetic capacity, decreased oxidative damage, and activated antioxidant enzymes showed that the physiological tolerance of transgenic tobacco to Cd was enhanced. The principal component analysis for the above physiological parameters explained 96.08% of the total variance (PC1, 77.77%; PC2, 18.31%), indicating a significant difference in Cd tolerance abilities between the tobacco expressing SmZIP8 and WT tobacco. Therefore, SmZIP8 may be considered as an important genetic resource for the phytoremediation of Cd or other heavy metal pollution via the use of transgenic plants obtained through genetic transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2022.111252DOI Listing

Publication Analysis

Top Keywords

transgenic tobacco
20
physiological tolerance
12
tolerance transgenic
12
tobacco
9
tobacco stress
8
ectopic expression
8
expression smzip8
8
root cells
8
antioxidant enzymes
8
smzip8 tobacco
8

Similar Publications

NtLPA1 overexpression regulates the growth of tobacco and enhances resistance to blight.

Transgenic Res

January 2025

Shaanxi Tobacco Company Baoji City Company, Baoji, 721000, Shaanxi, China.

The involvement of Loose Plant Architecture 1 (LPA1) in regulating plant growth and leaf angle has been previously demonstrated. However, the fundamental genetic background remains unidentified. To further understand the tissue expression profile of the NtLPA1 gene, an overexpression vector (pBI121-NtLPA1) was developed and employed to modify tobacco using the leaf disc method genetically.

View Article and Find Full Text PDF

Alkaline phosphatase (ALP) of the PhoA family is an important enzyme in mammals, microalgae, and certain marine bacteria. It plays a crucial role in the dephosphorylation of lipopolysaccharides (LPS) and nucleotides, which overstimulate cell signaling pathways and cause tissue inflammation in animals and humans. Insufficient ALP activity and expression levels have been linked to various disorders.

View Article and Find Full Text PDF

Promoter of Vegetable Pea Responds to Abiotic Stresses in Transgenic Tobacco.

Int J Mol Sci

December 2024

Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

Plasma membrane intrinsic proteins (PIPs), one sub-family of aquaporins (AQPs), are responsible for plant abiotic stress responses. However, little information is currently available about the stress responsiveness of the promoter in vegetable pea. In the present study, one novel promoter of which shared high similarity to the -type from other plants, was isolated.

View Article and Find Full Text PDF

Tea plant () is an important horticultural crop. The quality and productivity of tea plants is always threatened by various adverse environmental factors. Numerous studies have shown that intercropping tea plants with other plants can greatly improve the quality of their products.

View Article and Find Full Text PDF

Galactinol synthase gene 5 (MdGolS5) enhances the cold resistance of apples by promoting raffinose family oligosaccharide accumulation.

Plant Physiol Biochem

December 2024

College of Horticulture, Shenyang Agricultural University, Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China. Electronic address:

Article Synopsis
  • Low-temperature stress is a major challenge for apple production, and galactinol acts as a key cryoprotectant.
  • Exogenous application of galactinol on apple saplings was shown to reduce damage from cold stress, and transgenic plants overexpressing the MdGolS5 gene exhibited increased cold tolerance.
  • The study highlights the potential of galactinol and its biosynthetic pathway in enhancing cold resistance in apples, providing insights for future genetic improvements.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!