A major challenge in eukaryotic cells is the proper distribution of nuclear-encoded proteins to the correct organelles. For a subset of mitochondrial proteins, a signal sequence at the N terminus (matrix-targeting sequence [MTS]) is recognized by protein complexes to ensure their proper translocation into the organelle. However, the early steps of mitochondrial protein targeting remain undeciphered. The cytosolic chaperone nascent polypeptide-associated complex (NAC), which in yeast is represented as the two different heterodimers αβ-NAC and αβ'-NAC, has been proposed to be involved during the early steps of mitochondrial protein targeting. We have previously described that the mitochondrial outer membrane protein Sam37 interacts with αβ'-NAC and together promote the import of specific mitochondrial precursor proteins. In this work, we aimed to detect the region in the MTS of mitochondrial precursors relevant for their recognition by αβ'-NAC during their sorting to the mitochondria. We used targeting signals of different mitochondrial proteins (αβ'-NAC-dependent Oxa1 and αβ'-NAC-independent Mdm38) and fused them to GFP to study their intracellular localization by biochemical and microscopy methods, and in addition followed their import kinetics in vivo. Our results reveal the presence of a positively charged amino acid cluster in the MTS of select mitochondrial precursors, such as Oxa1 and Fum1, which are crucial for their recognition by αβ'-NAC. Furthermore, we explored the presence of this cluster at the N terminus of the mitochondrial proteome and propose a set of precursors whose proper localization depends on both αβ'-NAC and Sam37.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136113 | PMC |
http://dx.doi.org/10.1016/j.jbc.2022.101984 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA 98109.
Mx proteins, first identified in mammals, encode potent antiviral activity against a wide range of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), which mediate critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. Despite their crucial role, the evolutionary origins of Mx proteins are poorly understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908.
Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt antiviral responses for their benefit. The ubiquitous human pathogen, Herpes simplex virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune-sensing pathways and reduces productive replication in nonneuronal cells.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada.
This study, in vivo and in vitro, investigated the role of brain-derived neurotrophic factor (BDNF) in skeletal muscle adaptations to aerobic exercise. BDNF is a contraction-induced protein that may play a role in muscle adaptations to aerobic exercise. BDNF is involved in muscle repair, increased fat oxidation, and mitochondrial biogenesis, all of which are adaptations observed with aerobic training.
View Article and Find Full Text PDFNephrology (Carlton)
February 2025
Department of Quality Management, Tianjin Blood Center, Tianjin, China.
Aim: To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation.
Methods: C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation.
Vet Sci
December 2024
College of Veterinary Medicine, Yangzhou University/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China.
This study investigated the effects of long-term serum starvation on autophagy, metabolism, and differentiation of porcine skeletal muscle satellite cells (SMSCs) and elucidated the role of autophagy in skeletal muscle development. Our findings provide a theoretical basis for improving meat production in domestic pigs. The SMSCs isolated and preserved in our laboratory were revived and divided into six groups based on the culture medium serum concentration to simulate varying levels of serum starvation: 20% serum (control group), 15% serum (mild serum starvation group), 5% serum (severe serum starvation group), and their autophagy inhibition groups supplemented with 3-methyladenine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!