Discovery of IL-5-binding unnatural cyclic peptides from multiple libraries by directed evolution.

Biochem Biophys Res Commun

Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan. Electronic address:

Published: June 2022

Interleukin-5 (IL-5) is a type 2 cytokine involved in various allergic diseases, including severe eosinophilic asthma. In this study, we performed directed evolution against human IL-5 using systematic evolution of ligands by exponential enrichment (SELEX) from multiple mRNA-displayed peptide libraries. Peptide libraries were prepared with Escherichia coli-based reconstituted cell-free transcription and translation coupling system (PURE system) and spontaneously cyclized using multiple intramolecularly thiol-reactive benzoic acid-derived linkers, which were ribosomally incorporated through genetic code expansion. We successfully identified multiple novel IL-5-binding unnatural cyclic peptides with different cyclization linkers from multiple highly diverse mRNA-displayed libraries. Chemical dimerization was also performed to increase the avidity of unnatural cyclic IL-5-binding peptides. The novel IL-5-binding unnatural cyclic peptides discovered in this study could be used in various research, therapeutic, and diagnostic applications involving IL-5 signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2022.04.043DOI Listing

Publication Analysis

Top Keywords

unnatural cyclic
16
il-5-binding unnatural
12
cyclic peptides
12
directed evolution
8
peptide libraries
8
novel il-5-binding
8
multiple
5
discovery il-5-binding
4
unnatural
4
cyclic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!