In this paper we consider recent advances in the use of deep convolutional neural networks to understanding biological vision. We focus on claims about the plausibility of feedforward deep convolutional neural networks (fDCNNs) as models of image classification in the biological system. Despite the putative similarity of these networks to some properties of the biological vision system, and the remarkable levels of performance accuracy of some fDCNNs, we argue that their plausibility as a framework for understanding image classification remains unclear. We highlight two key issues that we suggest are relevant to the evaluation of any form of DNN used to examine biological vision: (1) Network transparency under analysis - that is, the challenge of understanding what networks do, and how they do it. (2) Identifying appropriate benchmarks for comparing network performance and the biological system using both quantitative and qualitative performance measures. We show that there are important divergences between fDCNNs and biological vision that reflect fundamental differences in computational architectures, and representational structures, supporting image classification in these networks and the biological system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2022.108058DOI Listing

Publication Analysis

Top Keywords

biological vision
20
image classification
16
neural networks
12
biological system
12
biological
8
classification biological
8
deep convolutional
8
convolutional neural
8
networks
6
vision
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!