Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cancer is a disease characterised by abnormal cell growth that can invade or spread to other regions of the body. Organoids are three-dimensional ex vivo tissue cultures made from embryonic stem cells, induced pluripotent stem cells, progenitor cells or tissue that serve as a physiological model for cancer research. These are designed to recapitulate the in vivo properties of tumours. Importantly, effective recapitulation of the structure of tissues and function is believed to predict patient response, allowing for the creation of personalised therapy in a timely manner that may be used in the clinic. This Review discusses the pre-clinical model and different types of human organoids as models for the development of high throughput drug screening and also aims to highlight how organoids are shaping the future of cancer research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acthis.2022.151895 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!