Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We theoretically investigate boosting second-harmonic generation (SHG) of monolayer van der Waals crystals by employing flatband modes hosted by photonic moiré superlattices. Such a system with high quality factor and a monolayer crystal accommodated on the top of it, provides a unique opportunity to enhance and manipulate SHG emission. We show that employing a doubly resonant diagram on such a moiré superlattice system not only boosts the SHG, but also tunes the directional emission of the second-harmonic wave. Moreover, we demonstrate that a structured beam illumination could further boost SHG, with the phase structure retrieved through a two-beam second-harmonic interference configuration. These results suggest the flatband modes in moiré superlattice as a promising platform for boosting SHG with monolayer van der Waals crystals, offering new possibilities for developing compact nonlinear photonic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.453625 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!