Several schemes are proposed to realize the conversion of photonic polarized-entangled Greenberger-Horne-Zeilinger state to Knill-Laflamme-Milburn state in decoherence-free subspace (DFS) via weak cross-Kerr nonlinearity and X-quadrature homodyne measurement with high fidelity. DFS is introduced to decrease the decoherence effect caused by the coupling between the system and the environment. Optimizations to improve the success rate and utilization of residual states are further investigated. This study indicates important applications for quantum information processing in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.458723 | DOI Listing |
Phys Rev Lett
December 2024
Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea and Division of Quantum Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.
High-dimensional multipartite entanglement plays a crucial role in quantum information science. However, existing schemes for generating such entanglement become complex and costly as the dimension of quantum units increases. In this Letter, we overcome the limitation by proposing a significantly enhanced linear optical heralded scheme that generates the d-level N-partite Greenberger-Horne-Zeilinger (GHZ) state with single-photon sources and linear operations.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
Phys Rev Lett
November 2024
Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA.
Quantum error correction protects logical quantum information against environmental decoherence by encoding logical qubits into entangled states of physical qubits. One of the most important near-term challenges in building a scalable quantum computer is to reach the break-even point, where logical quantum circuits on error-corrected qubits achieve higher fidelity than equivalent circuits on uncorrected physical qubits. Using Quantinuum's H2 trapped-ion quantum processor, we encode the Greenberger-Horne-Zeilinger (GHZ) state in four logical qubits with fidelity 99.
View Article and Find Full Text PDFSci Adv
October 2024
Institute for Theoretical Physics and Institute for Gravitational Physics (Albert-Einstein-Institute), Leibniz University Hannover, Appelstrasse 2, 30167 Hannover, Germany.
The use of correlated states and measurements promises improvements in the accuracy of frequency metrology and the stability of atomic clocks. However, developing strategies robust against dominant noise processes remains challenging. We address the issue of decoherence due to spontaneous decay and show that Greenberger-Horne-Zeilinger (GHZ) states, in conjunction with a correlated measurement and nonlinear estimation strategy, achieve gains of up to 2.
View Article and Find Full Text PDFNat Commun
October 2024
School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, and Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!