AI Article Synopsis

  • The fiber Bragg grating (FBG) sensor is praised for its easy production, precise measurements, and ability to support multiple sensors simultaneously.
  • A new method using a Mach-Zehnder interferometer (MZI) and white light source greatly enhances the FBG's vibration sensing capabilities.
  • This new system achieves a remarkable strain resolution of 35 /Hz at 1 kHz, surpassing existing FBG sensor systems, while also demonstrating effective multiplexing without interference.

Article Abstract

The fiber Bragg grating (FBG) sensor is well known for simple fabrication, absolute measurement, inherent multiplexing capability, etc. To date, most FBG sensors that use a broadband light source for demodulation can only achieve resolution at the µɛ level. In this Letter, we propose a white-light-driven self-reference sensing system with FBGs, using a Mach-Zehnder interferometer (MZI) and a white light source, to realize multiplexed high-resolution vibration sensing with a very simple system configuration. A strain resolution of 35 /Hz at 1 kHz is demonstrated, which is several orders of magnitude better than the current FBG sensor systems with white light sources. The performance of the sensing system is analyzed, and multiplexing capability is also experimentally evaluated; there is no observable cross talk.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.456466DOI Listing

Publication Analysis

Top Keywords

fbg sensor
8
multiplexing capability
8
light source
8
sensing system
8
white light
8
pico-strain resolution
4
resolution fiber-optic
4
fiber-optic sensor
4
sensor white-light
4
white-light interferometry
4

Similar Publications

Fiber Bragg gratings (FBGs) inscribed by UV light and different femtosecond laser techniques (phase mask, point-by-point, and plane-by-plane) were exposed-in several irradiation cycles-to accumulated high doses of gamma rays (up to 124 MGy) and neutron fluence (8.7 × 10/cm) in a research-grade nuclear reactor. The FBG peak wavelengths were measured continuously in order to monitor radiation-induced shifts.

View Article and Find Full Text PDF

Utilizing Tissues Self-Assembled in Fiber Optic-Based "Chinese Guzheng Strings" for Contractility Sensing and Drug Efficacy Evaluation: A Practical Approach.

Small

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China.

Recent advances in drug design and compound synthesis have highlighted the increasing need for effective methods of toxicity evaluation. A specialized force sensor, known as the light wavelength-encoded "Chinese guzheng" is developed. This innovative sensor is equipped with optical fiber strings and utilizes a wavelength-encoded fiber Bragg grating (FBG) that is chemically etched to reduce its diameter.

View Article and Find Full Text PDF

A novel, to the best of our knowledge, optical fiber whispering-gallery mode (WGM) sensor for simultaneously measuring humidity and temperature is proposed and investigated. The proposed sensor is realized by a polyvinyl alcohol (PVA)-coated capillary tube coupling with an optical single-mode fiber (SMF), which is integrated with a fiber Bragg grating (FBG). The as-fabricated sensor can be used not only for relative humidity (RH) sensing but also for temperature detection.

View Article and Find Full Text PDF

Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.

View Article and Find Full Text PDF

The effects of mechanical vibrations on control system stability could be significant in control systems designed on the assumption of rigid-body dynamics, such as launch vehicles. Vibrational loads can also cause damage to launch vehicles due to fatigue or excitation of structural resonances. This paper investigates a method to control structural vibrations in real time using a finite number of strain measurements from a fiber Bragg grating (FBG) sensor array.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!