In this work, iron was recovered from a kind of iron-rich pickling sludge by an acid leaching process, and the recycled iron was used as a catalyst to activate peroxydisulfate (PS) for the degradation of phenol. Different kinds of sludge catalysts were prepared by different drying methods such as ordinary drying (Ods), freeze drying (Fds) and vacuum drying (Vds). The degradation performance of the different catalysts/PS system under different conditions was explored, the vacuum drying sludge catalyst (Vds) has the best activity in a wide pH range (pH = 3-10) and a wide temperature range (0-40 °C). At the same time, the effect of a series of chelating agents (Oxalic acid (OA), Citric acid (CA), Tartaric acid (TA), Malic acid (DL-MA) and Ethylenediaminetetraacetic acid (EDTA)) on Vds/PS system was verified, and TA was selected as the best chelating agent to promote the degradation of the second stage where the degradation rate is limited. The quenching experiment and electron paramagnetic resonance (EPR) analysis indicated that hydroxyl radical (·OH) and sulfate radical (SO) were responsible for the abatement of the organic contaminant with ·OH playing a more important role. In summary, this study proposed an environmentally-friendly approach for the application of iron-rich pickling sludge in the remediation of phenol-contaminated water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2022.111 | DOI Listing |
J Environ Manage
December 2024
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China. Electronic address:
Sci Total Environ
June 2024
School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China. Electronic address:
Co-combustion of sewage sludge (SS) and coal slime (CS) is the preferred method for mitigating their environmental impact and increasing their added value. However, the interaction mechanism between SS and CS during the co-combustion process has not yet developed a unified understanding. This work aims to obtain the effect of CS types on SS-CS co-combustion and reveal the interaction mechanism between SS and CS based on the influence of pretreatment methods on the interaction.
View Article and Find Full Text PDFJ Environ Manage
April 2024
School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030006, Shanxi, China. Electronic address:
The co-combustion of sewage sludge (SS) and coal slime (CS) is a preferred method for their resource utilization, however, alkali and alkaline earth metals (AAEMs) in SS may affect the co-combustion process. In this work, the co-combustion behavior of AAEMs-rich SS and CS was investigated in terms of combustion characteristics, interactions, and combustion kinetics using a thermogravimetric analyzer. Further, the role of AAEMs in co-combustion was evaluated by loading Ca, K, Na, and Mg individually after pickling.
View Article and Find Full Text PDFMaterials (Basel)
February 2024
State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
The production process of the metallurgical industry generates a significant quantity of hazardous waste. At present, the common disposal method for metallurgical hazardous waste is landfilling, which synchronously leads to the leaching of toxic elements and the loss of valuable metals. This paper presents a comprehensive review of the research progress in the harmless treatment and resource utilization of stainless steel dust/sludge (including stainless steel dust and stainless steel pickling sludge) and aluminum ash (including primary aluminum ash and secondary aluminum dross), which serve as representative hazardous wastes in ferrous metallurgy and nonferrous metallurgy, respectively.
View Article and Find Full Text PDFMicrob Cell Fact
January 2024
Chongqing Institute of Green and Interligent Technology, Chinese Academy of Science, 266, Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, China.
Background: Pickled mustard, the largest cultivated vegetable in China, generates substantial waste annually, leading to significant environmental pollution due to challenges in timely disposal, leading to decomposition and sewage issues. Consequently, the imperative to address this concern centers on the reduction and comprehensive resource utilization of raw mustard waste (RMW). To achieve complete and quantitative resource utilization of RMW, this study employs novel technology integration for optimizing its higher-value applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!