3D Immunofluorescent Image Colocalization Quantification in Mouse Epiblast Stem Cells.

Methods Mol Biol

Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.

Published: May 2022

This chapter details 3D morphological topography of colony architecture optimization and nuclear protein localization by co-immunofluorescent confocal microscopy analysis. Colocalization assessment of nuclear and cytoplasmic cell regions is detailed to demonstrate nuclear and cytoplasmic localization in mEpiSCs by confocal microscopy and orthogonal colocalization assessment. Protein colocalization within mESCs, mEpiLCs, and mEpiSCs can be efficiently completed using these optimized protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2281-0_7DOI Listing

Publication Analysis

Top Keywords

confocal microscopy
8
colocalization assessment
8
nuclear cytoplasmic
8
immunofluorescent image
4
colocalization
4
image colocalization
4
colocalization quantification
4
quantification mouse
4
mouse epiblast
4
epiblast stem
4

Similar Publications

EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of .

Front Parasitol

March 2024

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.

The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.

View Article and Find Full Text PDF

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

Spectrally encoded flow cytometry using few-mode fiber collection.

Biomed Opt Express

January 2025

Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

In fiber-based confocal microscopy, using two separate fibers for illumination and collection enables the use of a few-mode fiber to achieve an effect similar to opening the pinhole in a conventional confocal microscope. In some Fourier-domain applications, however, or when a spectral measurement is involved, the coherent light detection would lead to noticeable spectral modulation artifacts that result from differential mode delay, an effect caused by the multimode propagation in the collection fiber. After eliminating these artifacts by using mode-dependent polarization control, we demonstrate effective spectrally encoded imaging with improved signal efficiency and lower speckle noise, and only a minor, negligible reduction in lateral and axial resolutions.

View Article and Find Full Text PDF

Background: Development of novel chiral antifungal agents for effective control of plant pathogens is urgently needed. In this study, a series of pyrazol-5-yl-benzamide derivatives containing chiral oxazoline moiety were rationally designed and developed based on molecular docking.

Results: The in vitro antifungal assay results indicated that compounds (rac)-4h (R = Et), (S)-4 h (R = S-Et) and (R)-4 h (R = R-Et) exhibited remarkable antifungal activities against Valsa mali with median effective concentration (EC) values of 0.

View Article and Find Full Text PDF

Deep eutectic solvent enhances antibacterial activity of a modular lytic enzyme against Acinetobacter baumannii.

Sci Rep

January 2025

Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.

In this study, we evaluated the combined effect between MLE-15, a modular lytic enzyme composed of four building blocks, and reline, a natural deep eutectic solvent. The bioinformatic analysis allowed us to determine the spatial architecture of MLE-15, whose components were bactericidal peptide cecropin A connected via a flexible linker to the cell wall binding domain (CBD) of mesophilic 201ϕ2 - 1 endolysin and catalytic domain (EAD) of highly thermostable Ph2119 endolysin. The modular enzyme showed high thermostability with the melting temperature of 93.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!