Unlabelled: Underwater traction of the spine is a physiotherapeutic method that combines the effects of mechanical traction and fresh water of indifferent temperature and seems promising for the treatment of pain in the lower back, which is due to the physiological basis of the mechanism of action on the spinal motion segment by eliminating muscle spasm and restoring the biomechanics of the spine.

Objective: To study the effectiveness of underwater horizontal traction in combination with mechanotherapy in patients with non-stenosing unstable degenerative spondylolisthesis of the lumbosacral spine of the 1st degree, accompanied by pain.

Material And Methods: The clinical study included 14 patients (mean age 50.21 years). Patients underwent underwater horizontal traction of the spine according to the modified Pushkareva-Vozdvizhenskaya method in a variable mode, the procedures were performed every other day, for a course of 6 procedures. After completion of the traction procedure, patients were recommended to put on a fixing lumbosacral corset, in which they rested for 30 minutes in the supine position. At the end of the rest period, the patients performed training of the back muscles with biofeedback on the mechanotherapeutic complex of simulators for 30 minutes daily, except for weekends, for a course of 10 procedures.

Results: All patients completed the course of treatment, during the procedures no side effects or deterioration were noted. During the treatment, motor and daily activity significantly improved according to the Oswestry scale (=0.002), the severity of the pain syndrome and its effect on the patient's activity decreased, according to the Roland-Morris questionnaire (=0.003). According to an objective assessment of the muscle strength of the lumbosacral spine at the initial level, no deviations from the normative parameters were revealed, however, during the treatment, a significant increase in strength was noted in all muscle groups.

Conclusion: Underwater horizontal traction of the spine in variable mode according to Pushkareva-Vozdvizhenskaya is an effective and safe method of conservative treatment of unstable non-stenosing degenerative spondylolisthesis of the 1st degree, accompanied by back pain, which helps to reduce the intensity of the pain syndrome and improve the daily motor and social activity of patients. The traction method should be supplemented with therapeutic exercises using mechanotherapeutic simulators to achieve a clinical result.

Download full-text PDF

Source
http://dx.doi.org/10.17116/kurort20229902145DOI Listing

Publication Analysis

Top Keywords

underwater horizontal
16
horizontal traction
16
degenerative spondylolisthesis
12
lumbosacral spine
12
traction spine
12
traction
8
spondylolisthesis lumbosacral
8
1st degree
8
degree accompanied
8
variable mode
8

Similar Publications

This work demonstrates the feasibility of performing through-the-sensor (TTS) sub-bottom imaging using low-frequency ([100 Hz-1kHz]) self-noise generated by the propulsion of an autonomous underwater vehicle (AUV) acting as a source of opportunity. The self-noise was recorded by a short towed horizontal line array (11.4 m aperture) by the same AUV while it operated ∼35 m above the seabed along a range-dependent section at the New England shelf break.

View Article and Find Full Text PDF

Underwater sound propagation over a layered seabed with weak shear rigiditya).

J Acoust Soc Am

January 2025

Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943-5216, USA.

The shear wave speed is often small compared to the compressional wave speed in the top part of the seabed, where acoustic normal modes penetrate. In sediments with weak but finite shear rigidity, the strongest conversion from compressional to shear waves occurs at interfaces within the sediment. Shear wave generation at such interfaces and interference within sediment layers lead to first-order perturbations in the normal mode phase speed and contributions to sound attenuation, which vary rapidly with frequency.

View Article and Find Full Text PDF

We aimed to investigate whether a linear relationship exists between swimming velocity and vertical body position for each stroke phase in front crawl, and to determine whether there are differences in the velocity effect among the stroke phases. Eleven male swimmers performed a 15 m front crawl at various swimming velocities. The whole-body centre of mass (CoM) was estimated from individual digital human models using inverse kinematics.

View Article and Find Full Text PDF

Microbial communities are crucial for important ecosystem functions in the open ocean, such as primary production and nutrient cycling. However, few studies have addressed the distribution of microplankton communities in the remote oligotrophic region of the Pacific Ocean. Moreover, the biogeochemical and physical drivers of microbial community structure are not fully understood in these areas.

View Article and Find Full Text PDF

In this paper, an underwater wireless optical communication (UWOC) system that can simultaneously achieve beam steering and pulse amplitude modulation (PAM) enabled by the acousto-optic effect is proposed and experimentally demonstrated. An approach to manipulate the driving signal of an acousto-optic modulator (AOM) is utilized to simultaneously achieve precise laser emission angle control and signal modulation, which enables high-speed link-switching for multi-user access. The system is tested in a 7-m water tank with a water attenuation coefficient of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!