The tumor microenvironment (TME) is related to chronic inflammation and is currently identified as a risk factor for the occurrence and development of endometrial cancer (EC). Pyroptosis is a new proinflammatory form of programmed cell death that plays a critical role in the progression of multiple diseases. However, the important role of pyroptosis in high-glucose (HG)-related EC and the underlying molecular mechanisms remain elusive. In the present study, transcriptome high-throughput sequencing revealed significantly higher hexokinase domain-containing 1 (HKDC1) expression in EC patients with diabetes than in EC patients with normal glucose. Mechanistically, HKDC1 regulates HG-induced cell pyroptosis by modulating the production of reactive oxygen species and pyroptosis-induced cytokine release in EC. In addition, HKDC1 regulates TME formation by enhancing glycolysis, promoting a metabolic advantage in lactate-rich environments to further accelerate EC progression. Subsequently, miR-876-5p was predicted to target the HKDC1 mRNA, and HOXC-AS2 was identified to potentially inhibit the miR-876-5p/HKDC1 axis in regulating cell pyroptosis in HG-related EC. Collectively, we elucidated the regulatory role of the HOXC-AS2/miR-876-5p/HKDC1 signal transduction axis in EC cell pyroptosis at the molecular level, which may provide an effective therapeutic target for patients with diabetes who are diagnosed with EC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277262PMC
http://dx.doi.org/10.1111/cas.15384DOI Listing

Publication Analysis

Top Keywords

cell pyroptosis
12
endometrial cancer
8
tumor microenvironment
8
patients diabetes
8
hkdc1 regulates
8
pyroptosis
5
hoxc-as2/mir-876-5p/hkdc1 axis
4
axis regulates
4
regulates endometrial
4
cancer progression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!