Nischarin Is Not the Functional I1 Imidazoline Receptor Involved in Blood Pressure Regulation.

J Cardiovasc Pharmacol

Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire-UR7296, CRBS, Faculté de Médecine, Université de Strasbourg, France .

Published: February 2022

Imidazoline receptor antisera selected/Nischarin was proposed several years ago as the functional entity for the I1 medullary receptors (I1Rs) targeted, together with α2-adrenoceptors, by the centrally acting antihypertensive drugs, such as clonidine. The objective of this study was to test this assumption using a pyrroline analog of clonidine, LNP599, which, unlike clonidine and related compounds, displays high selectivity toward I1Rs. Cardiovascular effects of LNP599 (3 mg/kg intravenous) were evaluated in anesthetized, artificially ventilated nischarin mutant rats expressing a truncated form of nischarin lacking the putative imidazoline binding site. LNP599 induced a rapid and pronounced fall in arterial blood pressure in wild-type animals (-42.7% ± 11.0% after 15 minutes), associated with a ≈30% heart rate reduction. Similar effects were obtained in homozygous and heterozygous nischarin mutant rats. The observation that the hypotensive response to I1R activation is not affected by the absence of the putative imidazoline binding site on nischarin strongly suggests that nischarin cannot be regarded as the functional I1R. Carbohydrate regulation was improved in nischarin mutant rats, further supporting the conclusion that nischarin and I1R are 2 distinct molecular entities.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0000000000001128DOI Listing

Publication Analysis

Top Keywords

nischarin mutant
12
mutant rats
12
nischarin
8
imidazoline receptor
8
blood pressure
8
putative imidazoline
8
imidazoline binding
8
binding site
8
nischarin functional
4
imidazoline
4

Similar Publications

Nischarin Is Not the Functional I1 Imidazoline Receptor Involved in Blood Pressure Regulation.

J Cardiovasc Pharmacol

February 2022

Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire-UR7296, CRBS, Faculté de Médecine, Université de Strasbourg, France .

Imidazoline receptor antisera selected/Nischarin was proposed several years ago as the functional entity for the I1 medullary receptors (I1Rs) targeted, together with α2-adrenoceptors, by the centrally acting antihypertensive drugs, such as clonidine. The objective of this study was to test this assumption using a pyrroline analog of clonidine, LNP599, which, unlike clonidine and related compounds, displays high selectivity toward I1Rs. Cardiovascular effects of LNP599 (3 mg/kg intravenous) were evaluated in anesthetized, artificially ventilated nischarin mutant rats expressing a truncated form of nischarin lacking the putative imidazoline binding site.

View Article and Find Full Text PDF

Previously, our lab discovered the protein Nischarin and uncovered its role in regulating cell migration and invasion via its interactions with several proteins. We subsequently described a role for Nischarin in breast cancer, in which it is frequently underexpressed. To characterize Nischarin's role in breast tumorigenesis and mammary gland development more completely, we deleted a critical region of the Nisch gene (exons 7-10) from the mouse genome and observed the effects.

View Article and Find Full Text PDF

Development of insulin resistance in Nischarin mutant female mice.

Int J Obes (Lond)

May 2019

Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA.

Background/objectives: NISCH-STAB1 is a newly identified locus correlated to human waist-hip ratio (WHR), which is a risk indicator of developing obesity-associated diabetes. Our previous studies have shown that Nisch mutant male mice increased glucose tolerance in chow-fed conditions. Thus we hypothesized that Nisch mutant mice will have changes in insulin resistance, adipocytes, hepatic steatosis when mice are fed with high-fat diet (HFD).

View Article and Find Full Text PDF

The formation of the vertebrate brain requires the generation, migration, differentiation and survival of neurons. Genetic mutations that perturb these critical cellular events can result in malformations of the telencephalon, providing a molecular window into brain development. Here we report the identification of an N-ethyl-N-nitrosourea-induced mouse mutant characterized by a fractured hippocampal pyramidal cell layer, attributable to defects in neuronal migration.

View Article and Find Full Text PDF

Nischarin (Nisch) is a key protein functioning as a molecular scaffold and thereby hosting interactions with several protein partners. To explore the physiological importance of Nisch, here we generated Nisch loss-of-function mutant mice and analyzed their metabolic phenotype. Nisch-mutant embryos exhibited delayed development, characterized by small size and attenuated weight gain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!